Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formaldehyde states

Formaldehyde can be used as a model for predicting carbonyl photochemistry and photophysics most successfully by exploring both the differences and similarities of the behavior of this molecule to that of the larger carbonyls. The "isolated molecule" processes by which the formaldehyde state is depopu-... [Pg.38]

Eluant Gas Effects on Gas Elution. Very brief tests were made to compare the effectiveness of dry N2, CO and CO2 as eluants (Figure 2). The three gases provided no differentiation between formaldehyde states in UF board. [Pg.92]

He also claimed that all those formaldehyde states are potentially hydrolyzable, and the more moisture-sensitive of them, in his opinion, undobtedly act as sources of a board s emitted formaldehyde. It is, however, not possible to distinguish between formaldehyde produced from the various states. [Pg.203]

Miller W H, Hernandez R, Moore C B and Polik W F A 1990 Transition state theory-based statistical distribution of unimolecular decay rates with application to unimolecular decomposition of formaldehyde J. Chem. Phys. 93 5657-66... [Pg.1043]

Formaldehyde is a gas, b.p. — 21°, and cannot obviously be stored as such moreover, it polymerises readily in the liquid and the gaseous state. The commercial preparation, formalin, is an aqueous solution containing 35-40 per cent, of formaldehyde and some methyl alcohol. The preparation of a solution of formaldehyde may be demonstrated by the following experiment. [Pg.325]

In practice, synthetic polymers are sometimes divided into two classes, thermosetting and thermo-plMtic. Those polymers which in their original condition will fiow and can be moulded by heat and pressime, but which in their finished or cured state cannot be re softened or moulded are known as thermo setting (examples phenol formaldehyde or urea formaldehyde polymer). Thermoplastic polymers can be resoftened and remoulded by heat (examples ethylene polymers and polymers of acrylic esters). [Pg.1014]

An example will help illustrate these ideas. Consider the formaldehyde molecule H2CO in C2v symmetry. The configuration which dominates the ground-state waveflinction has doubly occupied O and C 1 s orbitals, two CH bonds, a CO a bond, a CO n bond, and two 0-centered lone pairs this configuration is described in terms of symmetry adapted orbitals as follows (Iai22ai23ai2lb2 ... [Pg.265]

The teehniques used earlier for linear moleeules extend easily to non-linear moleeules. One begins with those states that ean be straightforwardly identified as unique entries within the box diagram. For polyatomie moleeules with no degenerate representations, the spatial symmetry of eaeh box entry is identieal and is given as the direet produet of the open-shell orbitals. For the formaldehyde example eonsidered earlier, the spatial symmetries of the nji and nn states were A2 and Ai, respeetively. [Pg.266]

Two-Stage Resins. The ratio of formaldehyde to phenol is low enough to prevent the thermosetting reaction from occurring during manufacture of the resin. At this point the resin is termed novolac resin. Subsequently, hexamethylenetetramine is incorporated into the material to act as a source of chemical cross-links during the molding operation (and conversion to the thermoset or cured state). [Pg.1018]

This reaction is carried out under base-catalyzed conditions and with a formaldehyde/phenol ratio greater than unity. The resulting product is called a C state resin or resite. [Pg.325]

Having assigned symmetry species to each of the six vibrations of formaldehyde shown in Worked example 4.1 in Chapter 4 (pages 90-91) use the appropriate character table to show which are allowed in (a) the infrared specttum and (b) the Raman specttum. In each case state the direction of the transition moment for the infrared-active vibrations and which component of the polarizability is involved for the Raman-active vibrations. [Pg.196]

Orbital promotions of this type give rise to states, such as the a and A states of formaldehyde, which are commonly referred to as nn states. In addition, transitions to such states, for example the a — X and A — X transitions of formaldehyde, are referred to colloquially as n — n or n-to-7i, transitions. [Pg.266]

In a molecule with electrons in n orbitals, such as formaldehyde, ethylene, buta-1,3-diene and benzene, if we are concerned only with the ground state, or excited states obtained by electron promotion within 7i-type MOs, an approximate MO method due to Hiickel may be useM. [Pg.267]

For formaldehyde give the lowest MO configuration resulting from a n -n promotion and deduce the resulting states. [Pg.288]

Ma.nufa.cture. AU. manufacturers of butynediol use formaldehyde ethynylation processes. The earliest entrant was BASF, which, as successor to I. G. Farben, continued operations at Ludwigshafen, FRG, after World War II. Later BASF also set up a U.S. plant at Geismar, La. The first company to manufacture in the United States was GAF in 1956 at Calvert City, Ky., and later at Texas City, Tex., and Seadrift, Tex. The most recent U.S. manufacturer is Du Pont, which went on stream at La Porte, Tex., about 1969. Joint ventures of GAF and Hbls in Mad, Germany, and of Du Pont and Idemitsu in Chiba, Japan, are the newest producers. [Pg.106]

At high enough concentrations, PAN is a potent eye irritant and phytotoxin. On a smoggy day in the Los Angeles area, PAN concentrations are typically 5 to 10 ppb in the rest of the United States PAN concentrations are generally a fraction of a ppb. An important formation route for formaldehyde [50-00-0] HCHO, is reaction 9. However, o2onolysis of olefinic compounds and some other reactions of VOCs can produce HCHO and other aldehydes. [Pg.372]

Urea.—Forma.IdehydeResins. Cellular urea—formaldehyde resins can be prepared in the following manner an aqueous solution containing surfactant and catalyst is made into a low density, fine-celled foam by dispersing air into it mechanically. A second aqueous solution consisting of partially cured urea—formaldehyde resin is then mixed into the foam by mechanical agitation. The catalyst in the initial foam causes the dispersed resin to cure in the cellular state. The resultant hardened foam is dried at elevated temperatures. Densities as low as 8 kg/m can be obtained by this method (117). [Pg.408]

Historically, formaldehyde has been and continues to be manufactured from methanol. EoUowing World War II, however, as much as 20% of the formaldehyde produced in the United States was made by the vapor-phase, noncatalytic oxidation of propane and butanes (72). This nonselective oxidation process produces a broad spectmm of coproducts (73) which requites a complex cosdy separation system (74). Hence, the methanol process is preferred. The methanol raw material is normally produced from synthesis gas that is produced from methane. [Pg.493]

Worldwide production capacity in 1989 was estimated to be over 15.5 x 10 t as 37 wt % formaldehyde (98). The United States, Canada, Europe, and Japan account for nearly 70% of the total capacity (98). Worldwide demand for formaldehyde in 1989 was estimated to be about 85—90% of capacity (98). [Pg.495]

Fomialdehyde is a basic chemical budding block for the production of a wide range of chemicals finding a wide variety of end uses such as wood products, plastics, and coatings. Table 6 shows the distribution of formaldehyde production in the United States from 1966 through 1989 (115). Production percentages reported in the following discussion are for the United States. [Pg.497]

Manufacture, Processing, and Economic Aspects. Hydroxyacetic acid is produced commercially in the United States as an iatermediate by the reaction of formaldehyde with carbon monoxide and water. [Pg.516]

Foamed plastics (qv) were developed in Europe and the United States in the mid-to-late 1930s. In the mid-1940s, extmded foamed polystyrene (XEPS) was produced commercially, foUowed by polyurethanes and expanded (molded) polystyrene (EPS) which were manufactured from beads (1,2). In response to the requirement for more fire-resistant ceUular plastics, polyisocyanurate foams and modified urethanes containing additives were developed in the late 1960s urea—formaldehyde, phenoHc, and other foams were also used in Europe at this time. [Pg.331]

World methanol consumption for 1992 is shown in Figure 10 (27). The principal use of methanol has traditionally been in the production of formaldehyde [50-00-0] where typically around 40% of the world methanol market is consumed. In the United States, an increasing role for methanol has been found in the oxygenated fuels market from the use of MTBE. Another significant use of methanol is in the production of acetic acid other uses include the production of solvents and chemical intermediates. [Pg.281]

Formaldehyde. Worldwide, the largest amount of formaldehyde (qv) is consumed in the production of urea—formaldehyde resins, the primary end use of which is found in building products such as plywood and particle board (see Amino resins and plastics). The demand for these resins, and consequently methanol, is greatly influenced by housing demand. In the United States, the greatest market share for formaldehyde is again in the constmction industry. However, a fast-growing market for formaldehyde can be found in the production of acetylenic chemicals, which is driven by the demand for 1,4-butanediol and its subsequent downstream product, spandex fibers (see Fibers, elastomeric). [Pg.281]

Oxidation Catalysis. The multiple oxidation states available in molybdenum oxide species make these exceUent catalysts in oxidation reactions. The oxidation of methanol (qv) to formaldehyde (qv) is generally carried out commercially on mixed ferric molybdate—molybdenum trioxide catalysts. The oxidation of propylene (qv) to acrolein (77) and the ammoxidation of propylene to acrylonitrile (qv) (78) are each carried out over bismuth—molybdenum oxide catalyst systems. The latter (Sohio) process produces in excess of 3.6 x 10 t/yr of acrylonitrile, which finds use in the production of fibers (qv), elastomers (qv), and water-soluble polymers. [Pg.477]

In recent years, synthetic polymeric pigments have been promoted as fillers for paper. Pigments that ate based on polystyrene [9003-53-6] latexes and on highly cross-linked urea—formaldehyde resins have been evaluated for this appHcation. These synthetic pigments are less dense than mineral fillers and could be used to produce lightweight grades of paper, but their use has been limited in the United States. [Pg.21]


See other pages where Formaldehyde states is mentioned: [Pg.353]    [Pg.87]    [Pg.101]    [Pg.102]    [Pg.103]    [Pg.103]    [Pg.469]    [Pg.353]    [Pg.353]    [Pg.87]    [Pg.101]    [Pg.102]    [Pg.103]    [Pg.103]    [Pg.469]    [Pg.353]    [Pg.266]    [Pg.267]    [Pg.410]    [Pg.597]    [Pg.1169]    [Pg.102]    [Pg.266]    [Pg.266]    [Pg.279]    [Pg.282]    [Pg.390]    [Pg.14]    [Pg.449]    [Pg.495]    [Pg.278]    [Pg.531]   
See also in sourсe #XX -- [ Pg.247 ]




SEARCH



Formaldehyde Excited State Optimization

Formaldehyde excited state

Formaldehyde steady state with methane

Formaldehyde, dipole moment ground state

Formaldehyde, dipole moment state

Formaldehyde, excited state geometry

Solutions, formaldehyde State

States of Formaldehyde

© 2024 chempedia.info