Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Forces electrolyte

To bring the ECM technique in practice for industrial applications, controlled metal removal with high accuracy is needed. To achieve this, the ECM setup requires electrical power system for supplying machining current to the electrodes, arrangements for forced electrolyte circulation between the tool and workpiece, and mechanical structure for controlled movement of tool toward the workpiece. Figure 2.2 shows the basic subunits of the ECM setup. [Pg.27]

L Enhanced and more uniform mass transport (via air-sparging, forced electrolyte circulation, ultrasonLci and tapered anodes) which permits higher current density operation (Fig. 4.6). [Pg.224]

L The speed of deposition is usually much lower than 75pmh (although forced electrolyte convection may improve this). [Pg.412]

Forced electrolyte flow via air sparging, pumping or jet flow in certain cases, a special closed cell may be used or the workpiece itself may function as a flowthrough cell (as in the case of plating the internal surface of cylinders). In a very few, specialized, applications, ultrasonic stimulation of the electrolyte is used. [Pg.400]

Debye-Hiickel theory The activity coefficient of an electrolyte depends markedly upon concentration. Jn dilute solutions, due to the Coulombic forces of attraction and repulsion, the ions tend to surround themselves with an atmosphere of oppositely charged ions. Debye and Hiickel showed that it was possible to explain the abnormal activity coefficients at least for very dilute solutions of electrolytes. [Pg.125]

The discussion focuses on two broad aspects of electrical phenomena at interfaces in the first we determine the consequences of the presence of electrical charges at an interface with an electrolyte solution, and in the second we explore the nature of the potential occurring at phase boundaries. Even within these areas, frequent reference will be made to various specialized treatises dealing with such subjects rather than attempting to cover the general literature. One important application, namely, to the treatment of long-range forces between surfaces, is developed in the next chapter. [Pg.169]

The flow can be radial, that is, in or out through a hole in the center of one of the plates [75] the relationship between E and f (Eq. V-46) is independent of geometry. As an example, a streaming potential of 8 mV was measured for 2-cm-radius mica disks (one with a 3-mm exit hole) under an applied pressure of 20 cm H2 on QT M KCl at 21°C [75]. The i potentials of mica measured from the streaming potential correspond well to those obtained from force balance measurements (see Section V-6 and Chapter VI) for some univalent electrolytes however, important discrepancies arise for some monovalent and all multivalent ions. The streaming potential results generally support a single-site dissociation model for mica with Oo, Uff, and at defined by the surface site equilibrium [76]. [Pg.188]

A major advance in force measurement was the development by Tabor, Win-terton and Israelachvili of a surface force apparatus (SFA) involving crossed cylinders coated with molecularly smooth cleaved mica sheets [11, 28]. A current version of an apparatus is shown in Fig. VI-4 from Ref. 29. The separation between surfaces is measured interferometrically to a precision of 0.1 nm the surfaces are driven together with piezoelectric transducers. The combination of a stiff double-cantilever spring with one of a number of measuring leaf springs provides force resolution down to 10 dyn (10 N). Since its development, several groups have used the SFA to measure the retarded and unretarded dispersion forces, electrostatic repulsions in a variety of electrolytes, structural and solvation forces (see below), and numerous studies of polymeric and biological systems. [Pg.236]

Determine the net DLVO interaction (electrostatic plus dispersion forces) for two large colloidal spheres having a surface potential 0 = 51.4 mV and a Hamaker constant of 3 x 10 erg in a 0.002Af solution of 1 1 electrolyte at 25°C. Plot U(x) as a function of x for the individual electrostatic and dispersion interactions as well as the net interaction. [Pg.251]

The force between two adjacent surfaces can be measured directly with the surface force apparatus (SEA), as described in section BT20 [96]. The SEA can be employed in solution to provide an in situ detennination of the forces. Although this instmment does not directly involve an atomically resolved measurement, it has provided considerable msight mto the microscopic origins of surface friction and the effects of electrolytes and lubricants [97]. [Pg.315]

Protems can be physisorbed or covalently attached to mica. Another method is to innnobilise and orient them by specific binding to receptor-fiinctionalized planar lipid bilayers supported on the mica sheets [15]. These surfaces are then brought into contact in an aqueous electrolyte solution, while the pH and the ionic strength are varied. Corresponding variations in the force-versus-distance curve allow conclusions about protein confomiation and interaction to be drawn [99]. The local electrostatic potential of protein-covered surfaces can hence be detemiined with an accuracy of 5 mV. [Pg.1741]

Figure Bl.20.10. Typical force curve for a streptavidin surface interacting with a biotin surface in an aqueous electrolyte of controlled pH. This result demonstrates the power of specific protein interactions. Reproduced with pennission from [81]. Figure Bl.20.10. Typical force curve for a streptavidin surface interacting with a biotin surface in an aqueous electrolyte of controlled pH. This result demonstrates the power of specific protein interactions. Reproduced with pennission from [81].
The driving force for migration is established by the different electrochemical potentials (AU) that exist at the two interfaces of the oxide. In other words, the electrochemical potential at the outer interface is controlled by the dominant redox species present in the electrolyte (e.g. O2). [Pg.2724]

The situation in figure C2.8.5(b) is different in that, in addition to the mechanism in figure C2.8.5(a), reduction of the redox species can occur at the counter-electrode. Thus, electron transfer tlirough the layer may not be needed, as film growth can occur with OH species present in the electrolyte involving a (field-aided) deprotonation of the film. The driving force is provided by the applied voltage, AU. [Pg.2724]

The changes, however, are both numerous and significant. First of all, there is a change in the organization of the subject matter. For example, material formerly contained in the section entitled Analytical Chemistry is now grouped by operational categories spectroscopy electrolytes, electromotive force, and chemical equilibrium and practical laboratory information. Polymers, rubbers, fats, oils, and waxes constitute a large independent section. [Pg.1286]

Section 8 now combines all the material on electrolytes, electromotive force, and chemical equilibrium, some of which had formerly been included in the old Analytical Chemistry section of earlier editions. Material on the half-wave potentials of inorganic and organic materials has been thoroughly revised. The tabulation of the potentials of the elements and their compounds reflects recent lUPAC (1985) recommendations. [Pg.1287]

Lime Soda. Process. Lime (CaO) reacts with a dilute (10—14%), hot (100°C) soda ash solution in a series of agitated tanks producing caustic and calcium carbonate. Although dilute alkaH solutions increase the conversion, the reaction does not go to completion and, in practice, only about 90% of the stoichiometric amount of lime is added. In this manner the lime is all converted to calcium carbonate and about 10% of the feed alkaH remains. The resulting slurry is sent to a clarifier where the calcium carbonate is removed, then washed to recover the residual alkaH. The clean calcium carbonate is then calcined to lime and recycled while the dilute caustic—soda ash solution is sent to evaporators and concentrated. The concentration process forces precipitation of the residual sodium carbonate from the caustic solution the ash is then removed by centrifugation and recycled. Caustic soda made by this process is comparable to the current electrolytic diaphragm ceU product. [Pg.527]


See other pages where Forces electrolyte is mentioned: [Pg.245]    [Pg.143]    [Pg.181]    [Pg.13]    [Pg.2815]    [Pg.248]    [Pg.72]    [Pg.245]    [Pg.160]    [Pg.245]    [Pg.143]    [Pg.181]    [Pg.13]    [Pg.2815]    [Pg.248]    [Pg.72]    [Pg.245]    [Pg.160]    [Pg.108]    [Pg.182]    [Pg.244]    [Pg.500]    [Pg.1712]    [Pg.1740]    [Pg.1937]    [Pg.2749]    [Pg.177]    [Pg.828]    [Pg.484]    [Pg.495]    [Pg.427]    [Pg.579]    [Pg.437]    [Pg.384]    [Pg.27]    [Pg.307]    [Pg.428]    [Pg.159]   
See also in sourсe #XX -- [ Pg.145 ]




SEARCH



© 2024 chempedia.info