Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Force Free energy

The first equation represents the situation before, while the second one describes the behaviour after the bond breaking. A is the dissociation energy of the RX bond. This leads to a quadratic activation driving force free energy relationship ... [Pg.34]

F force free energy Helmholtz function (luminous... [Pg.95]

The surface free energy can be regarded as the work of bringing a molecule from the interior of a liquid to the surface, and that this work arises from the fact that, although a molecule experiences no net forces while in the interior of the bulk phase, these forces become unbalanced as it moves toward the surface. As discussed in connection with Eq. Ill-IS and also in the next sections, a knowledge of the potential function for the interaction between molecules allows a calculation of the total surface energy if this can be written as a function of temperature, the surface free energy is also calculable. [Pg.56]

The interfacial free energy per unit area is given by the adhesion force Fo/lrR", estimate the Hamaker constant responsible for the adhesion force in the crossed-cylinder geometry illustrated in the inset to Fig. VI-6. [Pg.251]

A solid, by definition, is a portion of matter that is rigid and resists stress. Although the surface of a solid must, in principle, be characterized by surface free energy, it is evident that the usual methods of capillarity are not very useful since they depend on measurements of equilibrium surface properties given by Laplace s equation (Eq. II-7). Since a solid deforms in an elastic manner, its shape will be determined more by its past history than by surface tension forces. [Pg.257]

In Chapter III, surface free energy and surface stress were treated as equivalent, and both were discussed in terms of the energy to form unit additional surface. It is now desirable to consider an independent, more mechanical definition of surface stress. If a surface is cut by a plane normal to it, then, in order that the atoms on either side of the cut remain in equilibrium, it will be necessary to apply some external force to them. The total such force per unit length is the surface stress, and half the sum of the two surface stresses along mutually perpendicular cuts is equal to the surface tension. (Similarly, one-third of the sum of the three principal stresses in the body of a liquid is equal to its hydrostatic pressure.) In the case of a liquid or isotropic solid the two surface stresses are equal, but for a nonisotropic solid or crystal, this will not be true. In such a case the partial surface stresses or stretching tensions may be denoted as Ti and T2-... [Pg.260]

The basic phenomenon involved is that particles of ore are carried upward and held in the froth by virtue of their being attached to an air bubble, as illustrated in the inset to Fig. XIII-4. Consider, for example, the gravity-free situation indicated in Fig. XIII-5 for the case of a spherical particle. The particle may be entirely in phase A or entirely in phase B. Alternatively, it may be located in the interface, in which case both 7sa nnd 7sb contribute to the total surface free energy of the system. Also, however, some liquid-liquid interface has been eliminated. It may be shown (see Problem XIII-12) that if there is a finite contact angle, 0sab> the stable position of the particle is at the interface, as shown in Fig. XIII-5Z>. Actual measured detachment forces are in the range of 5 to 20 dyn [60]. [Pg.473]

It is helpful to consider qualitatively the numerical magnitude of the surface tensional stabilization of a particle at a liquid-liquid interface. For simplicity, we will assume 6 = 90°, or that 7sa = 7SB- Also, with respect to the interfacial areas, J sA = SB, since the particle will lie so as to be bisected by the plane of the liquid-liquid interface, and. AB = rcr - The free energy to displace the particle from its stable position will then be just trr 7AB- For a particle of l-mm radius, this would amount to about 1 erg, for Tab = 40 ergs/cm. This corresponds roughly to a restoring force of 10 dyn, since this work must be expended in moving the particle out of the interface, and this amounts to a displacement equal to the radius of the particle. [Pg.473]

The cleaning process proceeds by one of three primary mechanisms solubilization, emulsification, and roll-up [229]. In solubilization the oily phase partitions into surfactant micelles that desorb from the solid surface and diffuse into the bulk. As mentioned above, there is a body of theoretical work on solubilization [146, 147] and numerous experimental studies by a variety of spectroscopic techniques [143-145,230]. Emulsification involves the formation and removal of an emulsion at the oil-water interface the removal step may involve hydrodynamic as well as surface chemical forces. Emulsion formation is covered in Chapter XIV. In roll-up the surfactant reduces the contact angle of the liquid soil or the surface free energy of a solid particle aiding its detachment and subsequent removal by hydrodynamic forces. Adam and Stevenson s beautiful photographs illustrate roll-up of lanoline on wood fibers [231]. In order to achieve roll-up, one requires the surface free energies for soil detachment illustrated in Fig. XIII-14 to obey... [Pg.485]

If we consider the case of a gas in adsorption equilibrium with a surface, there must be no net free energy change on transporting a small amount from one region to the other. Therefore, since the potential represents the work done by the adsorption forces when adsorbate is brought up to a distance x from the surface, there must be a compensating compressional increase in the free energy of the adsorbate. Thus... [Pg.625]

A second source of standard free energies comes from the measurement of the electromotive force of a galvanic cell. Electrochemistry is the subject of other articles (A2.4 and B1.28). so only the basics of a reversible chemical cell will be presented here. For example, consider the cell conventionally written as... [Pg.365]

The leading order quantum correction to the classical free energy is always positive, is proportional to the sum of mean square forces acting on the particles and decreases with either increasing particle mass or mcreasing temperature. The next tenn in this expansion is of order This feature enables one to independently calculate the leading correction due to quanmm statistics, which is 0(h ). The result calculated in section A2.2.5.5 is... [Pg.402]

As with SCRF-PCM only macroscopic electrostatic contribntions to the Gibbs free energy of solvation are taken into account, short-range effects which are limited predominantly to the first solvation shell have to be considered by adding additional tenns. These correct for the neglect of effects caused by solnte-solvent electron correlation inclnding dispersion forces, hydrophobic interactions, dielectric saturation in the case of... [Pg.838]

Having separated the dynamical from equilibrium (or, more accurately, quasi-equilibrium) effects, one can readily discover the origin of the activation free energy and define the concept of the potential of mean force by analysis of the expression for the TST rate constant, k in (A3.8.3). The latter can be written as [7]... [Pg.887]

While simulations reach into larger time spans, the inaccuracies of force fields become more apparent on the one hand properties based on free energies, which were never used for parametrization, are computed more accurately and discrepancies show up on the other hand longer simulations, particularly of proteins, show more subtle discrepancies that only appear after nanoseconds. Thus force fields are under constant revision as far as their parameters are concerned, and this process will continue. Unfortunately the form of the potentials is hardly considered and the refinement leads to an increasing number of distinct atom types with a proliferating number of parameters and a severe detoriation of transferability. The increased use of quantum mechanics to derive potentials will not really improve this situation ab initio quantum mechanics is not reliable enough on the level of kT, and on-the-fly use of quantum methods to derive forces, as in the Car-Parrinello method, is not likely to be applicable to very large systems in the foreseeable future. [Pg.8]

Thus one must rely on macroscopic theories and empirical adjustments for the determination of potentials of mean force. Such empirical adjustments use free energy data as solubilities, partition coefficients, virial coefficients, phase diagrams, etc., while the frictional terms are derived from diffusion coefficients and macroscopic theories for hydrodynamic interactions. In this whole field of enquiry progress is slow and much work (and thought ) will be needed in the future. [Pg.22]


See other pages where Force Free energy is mentioned: [Pg.147]    [Pg.635]    [Pg.2174]    [Pg.131]    [Pg.374]    [Pg.147]    [Pg.635]    [Pg.2174]    [Pg.131]    [Pg.374]    [Pg.61]    [Pg.81]    [Pg.375]    [Pg.437]    [Pg.701]    [Pg.730]    [Pg.735]    [Pg.736]    [Pg.893]    [Pg.1957]    [Pg.2259]    [Pg.2585]    [Pg.2615]    [Pg.2649]    [Pg.2768]    [Pg.2815]    [Pg.5]    [Pg.8]    [Pg.15]    [Pg.40]    [Pg.58]    [Pg.66]    [Pg.67]    [Pg.70]    [Pg.86]    [Pg.129]    [Pg.131]    [Pg.134]    [Pg.134]   
See also in sourсe #XX -- [ Pg.175 ]




SEARCH



Chemical free energies, hydration forces

Force fields binding free energy prediction

Force fields free energy perturbation

Forces free energy, Gibbs

Free energy approach, hydration forces

Free energy calculating electromotive force from

Free energy calculations long range forces

Protein force fields free energies of aqueous solvation

Sensitivity of Calculated Free Energies to Force Field Parameters

Surface force free energy isotherms

© 2024 chempedia.info