Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Folds asymmetrical

A Lewis acid-mediated two-fold asymmetric Michael addition allows access to c( s-decalin derivatives. The reaction of the trimethylsilylenol ether of acety Icyclohexene with phenylmenthyl acrylate in the presence of Diethylaluminum Chloride (eq 7) yields the decalone in 64% yield (70% de). This has been shown not to be a Diels-Alder reaction. If the reaction is worked-up early, the initial Michael adduct can be isolated. ... [Pg.473]

The fact that spherical plant viruses and some small single-stranded RNA animal viruses build their icosahedral shells using essentially similar asymmetric units raises the possibility that they have a common evolutionary ancestor. The folding of the main chain in the protein subunits of these viruses supports this notion. [Pg.335]

Symmetrical fold—a fold whose shape is a mirror image across the hinge point. Asymmetrical fold—n fold whose shape is not a mirror image across the huge point. [Pg.249]

When we used asymmetric nucleophilic addition of malonate to the Mo tt-allyl complex in our first delivery, the Mo chemistry was not so clearly understood, and our application would be the first large scale example, to the best of our knowledge. Initially our contributions to Mo chemistry were two-fold (i) replacement of non-commercially available (EtCN)3Mo(CO)3 or (C7H8)Mo(CO)3 by more stable and inexpensive Mo(CO)6 by incorporation of proper pre-activating time (ii) simplified preparation of the chiral ligand. Even after we completed the project, we still had a strong interest in Mo chemistry. [Pg.62]

C2 Z = 4 Dx = 1.41 R = 0.102 for 4,115 intensities. The structure is a 3 2 complex of proflavine and CpG. The asymmetrical unit contains one CpG molecule, 1.5 proflavine molecules, 0.5 sulfate ion, and 11 5 water molecules. Two CpG molecules form an antiparallel, Watson-Crick, miniature duplex, with a proflavine intercalated between the base pairs through the wide groove. The double helix has exact (crystallographic), two-fold symmetry, and the crystallographic, two-fold axis passes through the C-9-N-10 vector of the intercalated proflavine. A second and a third molecule of proflavine are stacked on top of the C - G pairs ... [Pg.306]

At a more molecular level, the influences of the composition of the membrane domains, which are characteristic of a polarized cell, on diffusion are not specifically defined. These compositional effects include the differential distribution of molecular charges in the membrane domains and between the leaflets of the membrane lipid bilayer (Fig. 3). The membrane domains often have physical differences in surface area, especially in the surface area that is accessible for participation in transport. For example, the surface area in some cells is increased by the presence of membrane folds such as microvilli (see Figs. 2 and 6). The membrane domains also have differences in metabolic selectivity and capacity as well as in active transport due to the asymmetrical distribution of receptors and transporters. [Pg.244]

The lamellar thickening proceeds through many metastable states, each metastable state corresponding to a particular number of folds per chain, as illustrated in Fig. 8. In the original simulations of [22], Kg was monitored. Rg is actually very close to the lamellar thickness due to the asymmetric shape of the lamella. The number of folds indicated in Fig. 8 were identified by inspection of the coordinates of the united atoms. This quantization of the number of folds has been observed in experiments [50], as already mentioned. The process by which a state with p folds changes into a state with p - 1 folds is highly cooperative. The precursor lives in a quiescent state for a substantial time and suddenly it converts into the next state. By a succession of such processes, crystals thicken. If the simulation is run for a reasonably long time, the lamella settles down to the equilibrium number of folds per chain. [Pg.250]

Besides ruthenium porphyrins (vide supra), several other ruthenium complexes were used as catalysts for asymmetric epoxidation and showed unique features 114,115 though enantioselectivity is moderate, some reactions are stereospecific and treats-olefins are better substrates for the epoxidation than are m-olcfins (Scheme 20).115 Epoxidation of conjugated olefins with the Ru (salen) (37) as catalyst was also found to proceed stereospecifically, with high enantioselectivity under photo-irradiation, irrespective of the olefmic substitution pattern (Scheme 21).116-118 Complex (37) itself is coordinatively saturated and catalytically inactive, but photo-irradiation promotes the dissociation of the apical nitrosyl ligand and makes the complex catalytically active. The wide scope of this epoxidation has been attributed to the unique structure of (37). Its salen ligand adopts a deeply folded and distorted conformation that allows the approach of an olefin of any substitution pattern to the intermediary oxo-Ru species.118 2,6-Dichloropyridine IV-oxide (DCPO) and tetramethylpyrazine /V. V -dioxide68 (TMPO) are oxidants of choice for this epoxidation. [Pg.222]

Based on this, asymmetric hydroamination was developed using [Ir(C2H4)4Cl] or lr(coe)2Cl]2 (coe = cyclooctene) with chiral diphosphines to give complexes (57)-(61) (Scheme 40). While (57) afforded only a low yield and poor enantiomeric excess (51% 2S) of exo-2-(phenylamino)nor-bornane, addition of up to one equivalent of fluoride ion gave a six-fold increase in chemical yield (from 12% to 81%) and a reversal of enantioselectivity. In the case of (60), addition of four equivalents of fluoride led to an ee of 95 % The role of fluoride in these reactions has still not been explained satisfactorily.175... [Pg.293]

Halide impurities may have a negative effect on the rate of a hydrogenation reaction, as was observed by Cobley et al. These authors studied the asymmetric hydrogenation of 2-methylenesuccinamic acid using [(S,S)-(Et-DuPHOS)Rh-(COD)]BF4 as catalyst [76]. They were able to obtain a 30-fold acceleration upon removal of a chloride impurity from the substrate (Scheme 44.9). [Pg.1507]

Many efforts have been made to develop salen catalysts for the epoxidation of unfunctionalized olefins, and such work has been well documented.93 Very recently, Ito and Katsuki94 proposed that the ligand of the oxo salen species is not planar, but folded as shown in Figure 4-7 (R/ / H, R2 = H, L = achiral axial ligand). This folded chiral structure amplifies asymmetric induction by the Mn-salen complex. This transition state proposed by Ito and Katsuki is not compatible with the proposal by Palucki et al.95 that the salen ligands of oxo species are planar. [Pg.241]

PCR can also be used to generate an excess of single-stranded DNA which can then be labeled and used as DNA probes. This technique, which is called asymmetric PCR, involves using a 100-fold excess of one primer over the other. With this asymmetric ratio, double-stranded DNA will be synthesized in the first 20 to 25 cycles, at which time the primer used at a lower concentration would be consumed, leaving the primer that is in excess to preferentially synthesize single-stranded DNA over the next 5 to 10 cycles (G3). [Pg.18]

We have recently demonstrated the ability of six resorcin[4]arenes and eight water molecules to assemble in apolar media to form a spherical molecular assembly which conforms to a snub cube (Fig. 9.3). [10] The shell consists of 24 asymmetric units - each resorcin[4]arene lies on a four-fold rotation axis and each H2O molecule on a three-fold axis - in which the vertices of the square faces of the polyhedron correspond to the corners of the resorcin[4]arenes and the centroids of the eight triangles that adjoin three squares correspond to the water molecules. The assembly, which exhibits an external diameter of 2.4 nm, possesses an internal volume of about 1.4 A3 and is held together by 60 O-H O hydrogen bonds. [Pg.145]

One or both of the disadvantages are Hkely to be overcome in due course. It is obvious that a clearer picture of the mechanism of the oxidation is mandatory before much progress can be made. Once it is understood how this very simple protein folds, in the presence of organic solvent, to form a chiral cavity or chiral surface that activates the peroxide and/or enone to accomplish the desired asymmetric oxidation then the reaction may be extended to other substrates, e.g. a, unsaturated esters, nitroalkenes, perhaps (under different conditions) electron-rich alkenes. [Pg.143]


See other pages where Folds asymmetrical is mentioned: [Pg.74]    [Pg.74]    [Pg.19]    [Pg.202]    [Pg.341]    [Pg.383]    [Pg.74]    [Pg.8]    [Pg.177]    [Pg.52]    [Pg.139]    [Pg.104]    [Pg.285]    [Pg.33]    [Pg.320]    [Pg.93]    [Pg.101]    [Pg.284]    [Pg.1156]    [Pg.72]    [Pg.97]    [Pg.501]    [Pg.595]    [Pg.58]    [Pg.383]    [Pg.370]    [Pg.187]    [Pg.135]    [Pg.136]    [Pg.140]    [Pg.182]    [Pg.266]    [Pg.73]    [Pg.306]    [Pg.324]    [Pg.52]    [Pg.251]   
See also in sourсe #XX -- [ Pg.249 ]




SEARCH



© 2024 chempedia.info