Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorides precipitation process

The plutonium extracted by the Purex process usually has been in the form of a concentrated nitrate solution or symp, which must be converted to anhydrous PuF [13842-83-6] or PuF, which are charge materials for metal production. The nitrate solution is sufficientiy pure for the processing to be conducted in gloveboxes without P- or y-shielding (130). The Pu is first precipitated as plutonium(IV) peroxide [12412-68-9], plutonium(Ill) oxalate [56609-10-0], plutonium(IV) oxalate [13278-81-4], or plutonium(Ill) fluoride. These precipitates are converted to anhydrous PuF or PuF. The precipitation process used depends on numerous factors, eg, derived purity of product, safety considerations, ease of recovering wastes, and required process equipment. The peroxide precipitation yields the purest product and generally is the preferred route (131). The peroxide precipitate is converted to PuF by HF—O2 gas or to PuF by HF—H2 gas (31,132). [Pg.201]

Equations (141) and (142) describe the equilibrium between the hydrolysis of complex fluoride acids (shift to the right) and the fluorination of hydroxides (shift to the left). Near complete precipitation of hydroxides can be achieved by applying an excessive amount of ammonia. Typically, precipitation is performed by adding ammonia solution up to pH = 8-9. However, the precipitate that separates from the mother solution can be contaminated with as much as 20% wt. fluorine [490]. Analysis of niobium hydroxides obtained under different precipitation conditions showed that the most important parameter affecting the fluorine content of the resultant hydroxide is the amount of ammonia added [490]. Sheka et al. [491] found that increasing the pH to 9.6 toward the end of the precipitation process leads to a significant reduction in fluorine content of the niobium hydroxide. [Pg.293]

Precipitation Processes. Plutonium peroxide precipitation is used at Rocky Flats to convert the purified plutonium nitrate solution to a solid (14) the plutonium peroxide is then calcined to Pu02 and sent to the reduction step. The chemistry of the plutonium peroxide precipitation process is being studied, as well as alternative precipitation processes such as oxalate, carbonate, fluoride, and thermal denitration. The latter method shows the most promise for cost and waste reduction. [Pg.372]

Principle of Separation. Thorium co-precipitates with NdF3 while U02+ remains in solution. Filter paper with the neodymium fluoride precipitate and associated thorium is mounted on a planchet and counted for alpha and beta particles. The presence of alpha particles in the NdF3 precipitate indicates the amount of uranium that accompanies the precipitate unless 230Th is present. The ratio of the beta-particle count rate in the precipitate to the count rate in the initial sample of uranium with 234Th and 234mPa indicates the fractional yield of the co-precipitation process. [Pg.53]

The laboratory methods for recovering and purifying plutonium were not suited for large-scale production. The ether extraction used on the cyclotron-produced plutonium is a safety hazard. The lanthanum fluoride precipitation step yielded a gelatinous product that is difficult to process and the aqueous fluorides produced serious equipment corrosion. Other processes were... [Pg.2648]

Naturally occurring F associated with hydrous minerals has low mobility because it is occluded in structures. Airborne fluoride pollutants (from smelters, rock phosphate fertilizer factories, etc.) are, in contrast, easily dissolved on contact with the soil. These forms of fluoride can be bioaccumulated by plants before leaching, sorption, or precipitation processes have a chance to lower solubility. [Pg.333]

Plutonium trifluoride. Plutonium trifluoride can be converted directly to plutonium metal, or it is an intermediate in the formation of PUF4 or PUF4 -PUO2 mixtures for thermochemical reduction, as described in Sec. 4.8. The stabilized Pu(III) solution, produced by cation exchange in one of the Purex process options for fuel reprocessing, is a natural feed for the formation of plutonium trifluoride, as is shown in the flow sheet of Fig. 9.9 [03]. A typical eluent solution from cation exchange consists of 30 to 70 g plutonium/liter, 4 to 5 Af nitric acid, 0.2 Af sulfamic acid, and 03 Af hydroxylamine nitrate. The sulfamic acid reacts rapidly with nitrous acid to reduce the rate of oxidation of Pu(III) to about 4 to 6 percent per day. Addition of ascorbic acid to the plutonium solution just before fluoride precipitation reduces Pu(IV) rapidly and completely to Pu(III). [Pg.443]

Similar to treatment protocols of other chemical contaminants including arsenic, fluoride cannot be removed by typical water treatment means. Boiling, UV treatment, most methods of filtration, and most chemical treatment options are ineffective to remove fluoride from water. Synthetic ion exchange and precipitation processes, activated alumina filters, and reverse osmosis are typically used to remove fluoride from water in the developed world [5, 6]. There are no universally accepted used defluoridation techniques in the developing world with long felt need for development of appropriate technologies. [Pg.109]

Re OPe . The final step in the chemical processing of rare earths depends on the intended use of the product. Rare-earth chlorides, usually electrolytically reduced to the metallic form for use in metallurgy, are obtained by crystallisation of aqueous chloride solutions. Rare-earth fluorides, used for electrolytic or metaHothermic reduction, are obtained by precipitation with hydrofluoric acid. Rare-earth oxides are obtained by firing hydroxides, carbonates or oxalates, first precipitated from the aqueous solution, at 900°C. [Pg.546]

Solvent extraction—purification of wet-process phosphoric acid is based on preferential extraction of H PO by an organic solvent vs the cationic impurities present in the acid. Because selectivity of acid over anionic impurities is usually not sufficient, precipitation or evaporation steps are included in the purification process for removal. Cmde wet-process acid is typically concentrated and clarified prior to extraction to remove post-precipitated sludge and improve partition of the acid into the solvent. Concentration also partially eliminates fluoride by evaporation of HF and/or SiF. Chemical precipitation of sulfate (as Ba or Ca salts), fluorosiUcates (as Na salt), and arsenic (as sulfides) may also be used as a prepurification step preceding solvent extraction. [Pg.328]

Polymer Solvent. Sulfolane is a solvent for a variety of polymers, including polyacrylonitrile (PAN), poly(vinyhdene cyanide), poly(vinyl chloride) (PVC), poly(vinyl fluoride), and polysulfones (124—129). Sulfolane solutions of PAN, poly(vinyhdene cyanide), and PVC have been patented for fiber-spinning processes, in which the relatively low solution viscosity, good thermal stabiUty, and comparatively low solvent toxicity of sulfolane are advantageous. Powdered perfluorocarbon copolymers bearing sulfo or carboxy groups have been prepared by precipitation from sulfolane solution with toluene at temperatures below 300°C. Particle sizes of 0.5—100 p.m result. [Pg.70]

Aqueous hydrofluoric acid can be freed from lead by adding ImL of 10% strontium chloride per KXhnL of acid, lead being co-precipitated as lead fluoride with the strontium fluoride. If the hydrofluoric acid is decanted from the precipitate and the process repeated, the final lead content in the acid is less than 0.003 ppm. Similarly, lead can be precipitated from a nearly saturated sodium carbonate solution by adding 10% strontium chloride dropwise (l-2mL per lOOmL) followed by filtration. (If the sodium carbonate is required as a solid, the solution can be evaporated to dryness in a platinum dish.) Removal of lead from potassium chloride uses precipitation as lead sulfide by bubbling H2S, followed, after filtration, by evaporation and recrystallisation of the potassium chloride. [Pg.54]

The process of separating the intermediate products from the purified solutions, in the form of solid complex fluoride salts or hydroxides, is also related to the behavior of tantalum and niobium complexes in solutions of different compositions. The precipitation of complex fluoride compounds must be performed under conditions that prevent hydrolysis, whereas the precipitation of hydroxides is intended to be performed along with hydrolysis in order to reduce contamination of the oxide material by fluorine. [Pg.254]

The optimal temperature range for the fluorination process was found to be about 230-290°C. The resulting cake was leached with water. The prepared solution was separated from the precipitate by regular filtration and the separated insoluble precipitate was identified as lithium fluoride, LiF. The solution contained up to 90 g/1 Ta205. Solution acidity was relatively low, with a typical pH = 3-4, and was suitable for the precipitation of potassium heptafluorotantalate, K2TaF7, tantalum hydroxide or further purification by liquid-liquid extraction after appropriate adjustment of the solution acidity [113]. [Pg.264]

The optimal temperature range for the interaction was found to be 150-230°C. The cake resulting from the fluorination process was also successfully leached with water, dissolving ammonium oxyfluoroniobate, (NH4)3NbOF6. The solution was separated from the precipitate of lithium fluoride. The main parameters of the solution were a niobium concentration of about 75 g/1 Nb205, pH = 3—4. [Pg.264]

Uchino and Azuma [498] proposed a way in which to recycle the filtrate solutions. The process consists of adding calcium hydroxide, Ca(OH)2, to the filtrate, yielding a calcium fluoride, CaF2 precipitate and gaseous ammonia, NH3. The fluorine and ammonia are recovered in forms that are suitable for reutilization. [Pg.299]

Potassium heptafluorotantalate, K2TaF7, or as it is called by its commercial name K-salt, is a starting material for tantalum metal production. K-salt is produced by adding potassium fluoride, KF, or potassium chloride, KC1, to a tantalum strip solution that results from a liquid-liquid extraction process. In order to prevent hydrolysis and co-precipitation of potassium oxyfluoro-tantalate, a small excess of HF is added to the solution [24]. Another way to avoid the possible formation and co-precipitation of oxyfluoride phases is to use potassium hydrofluoride, KHF2, as a potassium-containing agent. The yield of the precipitation depends mostly on the concentration of the potassium-containing salt and is independent of the HF concentration [535]. [Pg.316]

Halide exchange, sometimes call the Finkelstein reaction, is an equilibrium process, but it is often possible to shift the equilibrium." The reaction is most often applied to the preparation of iodides and fluorides. Iodides can be prepared from chlorides or bromides by taking advantage of the fact that sodium iodide, but not the bromide or chloride, is soluble in acetone. When an alkyl chloride or bromide is treated with a solution of sodium iodide in acetone, the equilibrium is shifted by the precipitation of sodium chloride or bromide. Since the mechanism is Sn2, the reaction is much more successful for primary halides than for secondary or tertiary halides sodium iodide in acetone can be used as a test for primary bromides or chlorides. Tertiary chlorides can be converted to iodides by treatment with excess Nal in CS2, with ZnCl2 as catalyst. " Vinylic bromides give vinylic iodides with retention of configuration when treated with KI and a nickel bromide-zinc catalyst," or with KI and Cul in hot HMPA." ... [Pg.517]

Figure 5.11 (Crisp Wilson, 1974b) shows the time-dependent variation of the concentration of soluble ions in setting and hardening cements. Note that the concentrations of aluminium, calcium and fluoride rise to maxima as they are released from the glass. After the maximum is reached the concentration of soluble ions decreases as they are precipitated. Note that this process is much more rapid for calcium than for aluminium and the sharp decline in soluble calcium corresponds to gelation. This indication is supported by information from infrared spectroscopy which showed that gelation (initial set) was caused by the precipitation of calcium polyacrylate. This finding was later confirmed by Nicholson et al. (1988b) who, using Fourier transform infrared spectroscopy (FTIR), found that calcium polyacrylate could be detected in the cement paste within one minute of mixing the cement. There was no evidence for the formation of any aluminium polyacrylate within nine minutes and substantial amounts are not formed for about one hour (Crisp et al, 1974). Figure 5.11 (Crisp Wilson, 1974b) shows the time-dependent variation of the concentration of soluble ions in setting and hardening cements. Note that the concentrations of aluminium, calcium and fluoride rise to maxima as they are released from the glass. After the maximum is reached the concentration of soluble ions decreases as they are precipitated. Note that this process is much more rapid for calcium than for aluminium and the sharp decline in soluble calcium corresponds to gelation. This indication is supported by information from infrared spectroscopy which showed that gelation (initial set) was caused by the precipitation of calcium polyacrylate. This finding was later confirmed by Nicholson et al. (1988b) who, using Fourier transform infrared spectroscopy (FTIR), found that calcium polyacrylate could be detected in the cement paste within one minute of mixing the cement. There was no evidence for the formation of any aluminium polyacrylate within nine minutes and substantial amounts are not formed for about one hour (Crisp et al, 1974).

See other pages where Fluorides precipitation process is mentioned: [Pg.21]    [Pg.782]    [Pg.463]    [Pg.431]    [Pg.630]    [Pg.201]    [Pg.57]    [Pg.336]    [Pg.15]    [Pg.221]    [Pg.609]    [Pg.170]    [Pg.108]    [Pg.308]    [Pg.88]    [Pg.732]    [Pg.382]    [Pg.23]    [Pg.342]    [Pg.435]    [Pg.67]    [Pg.382]    [Pg.139]    [Pg.143]    [Pg.5]    [Pg.254]    [Pg.309]    [Pg.363]   
See also in sourсe #XX -- [ Pg.572 ]




SEARCH



Precipitation processes

Processing precipitation

© 2024 chempedia.info