Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorescence, polymer orientation

Nobbs, J. H., Ward, I. M. Polarized fluorescence in oriented polymers, in Photoluminescence of Synthetic Polymers (ed.) Phillips, D. C. Chap. 7, Chapman Hall Ltd., London (1984)... [Pg.114]

B. Schartel, Y. Wachtendorf, M. Grell, D.D.C. Bradley, and M. Hennecke, Polarized fluorescence and orientational order parameters of a liquid-crystalline conjugated polymer, Phys. Rev. B, 60 277-283, 1999. [Pg.270]

Figure C 1.5.13. Schematic diagram of an experimental set-up for imaging 3D single-molecule orientations. The excitation laser with either s- or p-polarization is reflected from the polymer/water boundary. Molecular fluorescence is imaged through an aberrating thin water layer, collected with an inverted microscope and imaged onto a CCD array. Aberrated and unaberrated emission patterns are observed for z- and xr-orientated molecules, respectively. Reprinted with pennission from Bartko and Dickson [148]. Copyright 1999 American Chemical Society. Figure C 1.5.13. Schematic diagram of an experimental set-up for imaging 3D single-molecule orientations. The excitation laser with either s- or p-polarization is reflected from the polymer/water boundary. Molecular fluorescence is imaged through an aberrating thin water layer, collected with an inverted microscope and imaged onto a CCD array. Aberrated and unaberrated emission patterns are observed for z- and xr-orientated molecules, respectively. Reprinted with pennission from Bartko and Dickson [148]. Copyright 1999 American Chemical Society.
Viovy,J.L. and Monnerie, L. Fluorescence Anisotropy Technique Using Synchroton Radiation as a Powerful Means for Studying the Orientation Correlation Functions of Polymer Chains. Vol. 67, pp. 99—122. [Pg.162]

In fluorescence spectroscopy, the orientation distribution of the guest probe is not necessarily identical to the actual orientation of the polymer chains, even if it is added at very small concentrations (i.e., a probe with high fluorescence efficiency). As a matter of fact, it is generally assumed that long linear probes are parallel to the polymer main chain, but this is not necessarily the case. Nevertheless, if the relation between the distribution of the probe axes and those of the polymer axes is known, the ODF of the structural units can be calculated from that of the probe thanks to the Legendre s addition theorem. Finally, the added probe seems to be mainly located in the amorphous domains of the polymer [69] so that fluorescence spectroscopy provides information relative to the noncrystalline regions of the polymeric samples. [Pg.324]

Problems related to the use of a guest dye can be reduced if the polymer contains a fluorescent chemical group. Gohil and Salem [70] took advantage of such intrinsic fluorescence to characterize the in-plane distribution of orientation in biaxially drawn PET films. In these experiments, the chain-intrinsic fluorescent label is due to the formation of dimers by two terephthalic moieties, exclusively within the noncrystalline regions. A comparison between sequential and simultaneous drawing along the MD and TD directions was undertaken for a fixed MD draw ratio of 3.5 and various TD draw ratios. The orientational order was characterized by two "orientation ratios" Rmd and RTD such that... [Pg.324]

The fluorescence polarization technique is a very powerful tool for studying the fluidity and orientational order of organized assemblies (see Chapter 8) aqueous micelles, reverse micelles and microemulsions, lipid bilayers, synthetic non-ionic vesicles, liquid crystals. This technique is also very useful for probing the segmental mobility of polymers and antibody molecules. Information on the orientation of chains in solid polymers can also be obtained. [Pg.151]

Raman spectroscopy has been widely used to study the composition and molecular structure of polymers [100, 101, 102, 103, 104]. Assessment of conformation, tacticity, orientation, chain bonds and crystallinity bands are quite well established. However, some difficulties have been found when analysing Raman data since the band intensities depend upon several factors, such as laser power and sample and instrument alignment, which are not dependent on the sample chemical properties. Raman spectra may show a non-linear base line to fluorescence (or incandescence in near infrared excited Raman spectra). Fluorescence is a strong light emission, which interferes with or totally swaps the weak Raman signal. It is therefore necessary to remove the effects of these variables. Several methods and mathematical artefacts have been used in order to remove the effects of fluorescence on the spectra [105, 106, 107]. [Pg.217]


See other pages where Fluorescence, polymer orientation is mentioned: [Pg.96]    [Pg.632]    [Pg.170]    [Pg.434]    [Pg.77]    [Pg.148]    [Pg.297]    [Pg.324]    [Pg.8]    [Pg.270]    [Pg.58]    [Pg.467]    [Pg.468]    [Pg.476]    [Pg.95]    [Pg.97]    [Pg.418]    [Pg.112]    [Pg.432]    [Pg.436]    [Pg.86]    [Pg.310]    [Pg.72]    [Pg.491]    [Pg.116]    [Pg.148]    [Pg.647]    [Pg.393]    [Pg.386]    [Pg.139]    [Pg.197]   
See also in sourсe #XX -- [ Pg.2 , Pg.901 , Pg.902 ]




SEARCH



Fluorescence orientation

Fluorescent polymers

Polymers fluorescence

© 2024 chempedia.info