Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow patterns example

If these assumptions are satisfied then the ideas developed earlier about the mean free path can be used to provide qualitative but useful estimates of the transport properties of a dilute gas. While many varied and complicated processes can take place in fluid systems, such as turbulent flow, pattern fonnation, and so on, the principles on which these flows are analysed are remarkably simple. The description of both simple and complicated flows m fluids is based on five hydrodynamic equations, die Navier-Stokes equations. These equations, in trim, are based upon the mechanical laws of conservation of particles, momentum and energy in a fluid, together with a set of phenomenological equations, such as Fourier s law of themial conduction and Newton s law of fluid friction. When these phenomenological laws are used in combination with the conservation equations, one obtains the Navier-Stokes equations. Our goal here is to derive the phenomenological laws from elementary mean free path considerations, and to obtain estimates of the associated transport coefficients. Flere we will consider themial conduction and viscous flow as examples. [Pg.671]

This gives two choices ia interpreting calculated NRR values, ie, a direct comparison of NRR values for different options or a comparison of the NRR value of each option with a previously defined NRR cutoff level for acceptabiUty. The NPV, DTC, and NRR can be iaterpreted as discounted measures of the return, iavestment, and return rate, analogous to the parameters of the earher example. These three parameters characterize a venture over its entire life. Additional parameters can be developed to characterize the cash flow pattern duting the early venture years. Eor example, the net payout time (NPT) is the number of operating years for the cumulative discounted cash flow to sum to zero. This characterizes the early cash flow pattern it can be viewed as a discounted measure of the expected operating time that the investment is at risk. [Pg.447]

Gash Flow Examples. Several hypothetical ventures are presented to illustrate cash flow analysis. Venture A exhibits a cash flow analysis. Venture A exhibits a cash flow pattern typical of process ventures. Other ventures are introduced for comparison and to provide additional insight into cash flow analysis. [Pg.448]

Experimental values of Hqg -nd Hql for a number of distillation systems of commercial interest are also readily available. Extrapolation of the data or the correlations to conditions that differ significantly from those used for the original experiments is risky. For example, pressure has a major effect on vapor density and thus can affect the hydrodynamics significantly. Changes in flow patterns affeci both mass-transfer coefficients and interfacial area. [Pg.625]

Approximate prediction of flow pattern may be quickly done using flow pattern maps, an example of which is shown in Fig. 6-2.5 (Baker, Oil Gas]., 53[12], 185-190, 192-195 [1954]). The Baker chart remains widely used however, for critical calculations the mechanistic model methods referenced previously are generally preferred for their greater accuracy, especially for large pipe diameters and fluids with ysical properties different from air/water at atmospheric pressure. In the chart. [Pg.652]

In vertical downward flow as well as in upward and downward inclined flows, the flow patterns that can be observed are essentially similar to those described above, and the definitions used can be applied. Experimental data on flow patterns and the transition boundaries are usually mapped on a two dimensional plot. Two basic types of coordinates are generally used for this mapping - one that uses dimensional coordinates such as superficial velocities, mass superficial velocities, or momentum flux and another that uses dimensionless coordinates in which some kind of dimensionless groups are used as coordinates. The dimensional coordinates maps are inherently limited to the range of data and flow conditions under which the experiments were conducted. In spite of this limitation, it is widely used because of its simplicity and ease of use. Figure 24 provides an example of such a map. [Pg.120]

Figure 24. Example of flow pattern map for air water system in horizontal pipes. Figure 24. Example of flow pattern map for air water system in horizontal pipes.
However, the correlation between and is essentially dependent on the flow pattern, and therefore the correlations, for example Eq. (14.72), are limited to distinctly specified cases. Figure 14.9 illustrates different types of vertical flow, each of which requires its own model for the correlation between and w so-... [Pg.1335]

Fig. 3-31 Examples of melt flow patterns to consider during the design stage to eliminate or at least minimise weld lines to obtain maximum strength. Fig. 3-31 Examples of melt flow patterns to consider during the design stage to eliminate or at least minimise weld lines to obtain maximum strength.
The flow patterns resulting from the conditions of a particular fabricating process are very important in influencing product performances. The melting of plastics follows different phases that effect performances. An example is its modulus of elasticity as shown in Fig.7-8. As the temperature increases, the plastic goes through the phases of glassy, transition, rubbery, to melt flow. [Pg.442]

Many materials of practical interest (such as polymer solutions and melts, foodstuffs, and biological fluids) exhibit viscoelastic characteristics they have some ability to store and recover shear energy and therefore show some of the properties of both a solid and a liquid. Thus a solid may be subject to creep and a fluid may exhibit elastic properties. Several phenomena ascribed to fluid elasticity including die swell, rod climbing (Weissenberg effect), the tubeless siphon, bouncing of a sphere, and the development of secondary flow patterns at low Reynolds numbers, have recently been illustrated in an excellent photographic study(18). Two common and easily observable examples of viscoelastic behaviour in a liquid are ... [Pg.115]

Figure 2.39a-o illustrates a typical example of alternate two-phase flow patterns at a distance of 1,000-1,500 pm downstream from the inlet of the test section. In... [Pg.54]

Example 11.7 Carbon dioxide is sometimes removed from natural gas by reactive absorption in a tray column. The absorbent, typically an amine, is fed to the top of the column and gas is fed at the bottom. Liquid and gas flow patterns are similar to those in a distillation column with gas rising, liquid falling, and gas-liquid contacting occurring on the trays. Develop a model for a multitray CO2 scrubber assuming that individual trays behave as two-phase, stirred tank reactors. [Pg.393]

Establish ideal flow patterns This is usually assumed to be the case for plug-flow and continuously stirred tank reactors, but are all conditions for ideal mixing fulfilled For example, a rule of thumb is that the diameter d of the PFR should be at least lOx the diameter of the catalyst particles to eliminate the influence of the reactor wall. Also, the amount of catalyst should be sufficient to avoid axial gradients. Another rule is that the ratio of the bed length L to the reactor diameter d, i.e. L/d, should be >5-10. Higher values are preferable, but these may cause other problems such as temperature gradients and pressure drops. [Pg.204]

Another numerical study of free-surface flow patterns in narrow channels was conducted by Yang et al. [185]. They considered the flow of bubbles of different size driven by body forces, for example the rising of bubbles in a narrow capillary due to buoyancy. The lattice Boltzmann method [186] was used as a numerical scheme... [Pg.238]

This class of hybrid components comprises chip micro-reactor devices, as described in Section 4.1.3, connected to conventional tubing. This may be H PLC tubing which sometimes has as small internals as micro channels themselves. The main function of the tubing is to provide longer residence times. Sometimes, flow through the tube produces characteristic flow patterns such as in slug-flow tube reactors. Chip-tube micro reactors are typical examples of multi-scale architecture (assembly of components of hybrid origin). [Pg.393]


See other pages where Flow patterns example is mentioned: [Pg.248]    [Pg.248]    [Pg.100]    [Pg.580]    [Pg.423]    [Pg.427]    [Pg.555]    [Pg.442]    [Pg.438]    [Pg.631]    [Pg.705]    [Pg.1636]    [Pg.1636]    [Pg.188]    [Pg.538]    [Pg.641]    [Pg.86]    [Pg.222]    [Pg.27]    [Pg.295]    [Pg.527]    [Pg.694]    [Pg.43]    [Pg.46]    [Pg.222]    [Pg.252]    [Pg.281]    [Pg.103]    [Pg.87]    [Pg.400]    [Pg.364]    [Pg.301]    [Pg.249]    [Pg.2]    [Pg.4]   
See also in sourсe #XX -- [ Pg.781 ]




SEARCH



Flow examples

Flow patterns

© 2024 chempedia.info