Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow models dispersions

Rate expression Plug flow model Dispersed plug flow model... [Pg.154]

A dense-bed center-fed column (Fig. 22-li) having provision for internal crystal formation and variable reflux was tested by Moyers et al. (op. cit.). In the theoretical development (ibid.) a nonadiabatic, plug-flow axial-dispersion model was employed to describe the performance of the entire column. Terms describing interphase transport of impurity between adhering and free liquid are not considered. [Pg.1994]

A model of a reaction process is a set of data and equations that is believed to represent the performance of a specific vessel configuration (mixed, plug flow, laminar, dispersed, and so on). The equations include the stoichiometric relations, rate equations, heat and material balances, and auxihaiy relations such as those of mass transfer, pressure variation, contac ting efficiency, residence time distribution, and so on. The data describe physical and thermodynamic properties and, in the ultimate analysis, economic factors. [Pg.2070]

This model is referred to as the axial dispersed plug flow model or the longitudinal dispersed plug flow model. (Dg)j. ean be negleeted relative to (Dg)[ when the ratio of eolumn diameter to length is very small and the flow is in the turbulent regime. This model is widely used for ehemieal reaetors and other eontaeting deviees. [Pg.729]

Comparison of solutions of the axially dispersed plug flow model for different boundary conditions... [Pg.740]

The axial dispersion plug flow model is used to determine the performanee of a reaetor with non-ideal flow. Consider a steady state reaeting speeies A, under isothermal operation for a system at eonstant density Equation 8-121 reduees to a seeond order differential equation ... [Pg.742]

The dispersed plug flow model has been successfully applied to describe the flow characteristics in the Kenics mixer. The complex flow behavior in the mixer is characterized by the one-parameter. The Peclet number, Np, is defined by ... [Pg.748]

Observe that the axial dispersion model provides a lower and thus more conservative estimate of conversion than does the piston flow model given the same values for the input parameters. There is a more subtle possibility. The model may show that it is possible to operate with less conservative values for some parameters—e.g., higher values for Tin and T aii— without provoking adverse side reactions. [Pg.344]

Axial Dispersion. Enthusiastic modelers sometimes add axial dispersion terms to their two-phase, piston flow models. The component balances are... [Pg.409]

A one-dimensional isothermal plug-flow model is used because the inner diameter of the reactor is 4 mm. Although the apparent gas flow rate is small, axial dispersion can be neglected because the catalj st is closely compacted and the concentration profile is placid. With the assumption of Langmuir adsorption, the reactor model can be formulated as. [Pg.335]

The UASB tractor was modeled by the dispensed plug flow model, considering decomposition reactions for VFA componaits, axial dispersion of liquid and hydrodynamics. The difierential mass balance equations based on the dispersed plug flow model are described for multiple VFA substrate components considaed... [Pg.662]

A pilot scale UASB reactor was simulated by the dispersed plug flow model with Monod kinetic parameters for the hypothetical influent composition for the three VPA ccmiponents. As a result, the COD removal efflciency for the propionic acid is smallest because its decomposition rate is cptite slow compared with other substrate components their COD removal eflSciencies are in order as, acetic acid 0.765 > butyric acid 0.705 > propionic acid 0.138. And the estimated value of the total COD removal efficiency is 0.561. This means that flie inclusion of large amount of propionic acid will lead to a significant reduction in the total VFA removal efficiency. [Pg.664]

This example models the dynamic behaviour of an non-ideal isothermal tubular reactor in order to predict the variation of concentration, with respect to both axial distance along the reactor and flow time. Non-ideal flow in the reactor is represented by the axial dispersion flow model. The analysis is based on a simple, isothermal first-order reaction. [Pg.410]

As discussed in Sec. 4.3.6, the axial dispersion flow model is given by... [Pg.410]

From the axial dispersion flow model the component balance equation is 9Ca 9Ca 3 Ca, p... [Pg.414]

The washing of filter cake is carried out to remove liquid impurities from valuable solid product or to increase recovery of valuable filtrates from the cake. Wakeman (1990) has shown that the axial dispersion flow model, as developed in Sec. 4.3.6, provides a fundamental description of cake washing. It takes into account such situations as non-uniformities in the liquid flow pattern, non-uniform porosity distributions, the initial spread of washing liquid onto the topmost surface of the filter cake and the desorption of solute from the solid surfaces. [Pg.578]

Illustration Kinetics of dispersion the two-zone model. The models for agglomerate rupture when integrated with a flow model are useful for the modeling of dispersion in practical mixers, as was discussed for the case of drop dispersion. Manas-Zloczower, Nir, and Tadmor (1982), in an early study, presented a model for the dispersion of carbon black in rubber in a Banbury mixer (Fig. 34). The model is based on several simplifying assumptions Fragmentation is assumed to occur by rupture alone, and each rupture produces two equal-sized fragments. Rupture is assumed to occur... [Pg.170]

Dispersed flow model. To calculate the actual quality, vapor temperature, and wall temperature, or heat flux, as functions of axial position beyond dryout... [Pg.309]

Andreani, M., and G. Yadigaroglu, 1992, Difficulties in Modeling Dispersed Flow Boiling, War me und Stoffubertragung 27 37-49. (4)... [Pg.520]

This result compares to a value of 0.666 predicted on the basis of the segregated flow model. Excellent agreement should be obtained for the first-order case if the dispersion parameter gives a good fit of the experimental F(t) curve. Agreement for reaction orders other than unity will not be nearly as good. [Pg.416]

All these values are close to those predicted by the segregated flow and dispersion models. [Pg.416]

Equations 12.7.48 and 12.7.39 provide the simplest one-dimensional mathematical model of tubular fixed bed reactor behavior. They neglect longitudinal dispersion of both matter and energy and, in essence, are completely equivalent to the plug flow model for homogeneous reactors that was examined in some detail in Chapters 8 to 10. Various simplifications in these equations will occur for different constraints on the energy transfer to or from the reactor. Normally, equations 12.7.48 and 12.7.39... [Pg.507]

In this section, we apply the axial dispersion flow model (or DPF model) of Section 19.4.2 to design or assess the performance of a reactor with nonideal flow. We consider, for example, the effect of axial dispersion on the concentration profile of a species, or its fractional conversion at the reactor outlet. For simplicity, we assume steady-state, isothermal operation for a simple system of constant density reacting according to A - products. [Pg.499]

In a bubble-column reactor for a gas-liquid reaction, Figure 24.1(e), gas enters the bottom of the vessel, is dispersed as bubbles, and flows upward, countercurrent to the flow of liquid. We assume the gas bubbles are in PF and the liquid is in BMF, although nonideal flow models (Chapter 19) may be used as required. The fluids are not mechanically agitated. The design of the reactor for a specified performance requires, among other things, determination of the height and diameter. [Pg.608]

Explain carefully the dispersed plug-flow model for representing departure from ideal plug flow. What are the requirements and limitations of the tracer response technique for determining Dispersion Number from measurements of tracer concentration at only one location in the system Discuss the advantages of using two locations for tracer concentration measurements. [Pg.275]

Empty tubular reactors often are simulated by the simple plug flow model or by a dispersion model with a small value of the dispersion coefficient. [Pg.504]

Liquid-liquid extraction is carried out either (1) in a series of well-mixed vessels or stages (well-mixed tanks or in plate column), or (2) in a continuous process, such as a spray column, packed column, or rotating disk column. If the process model is to be represented with integer variables, as in a staged process, MILNP (Glanz and Stichlmair, 1997) or one of the methods described in Chapters 9 and 10 can be employed. This example focuses on optimization in which the model is composed of two first-order, steady-state differential equations (a plug flow model). A similar treatment can be applied to an axial dispersion model. [Pg.448]


See other pages where Flow models dispersions is mentioned: [Pg.387]    [Pg.246]    [Pg.387]    [Pg.246]    [Pg.34]    [Pg.2083]    [Pg.729]    [Pg.762]    [Pg.222]    [Pg.98]    [Pg.400]    [Pg.224]    [Pg.156]    [Pg.234]    [Pg.10]    [Pg.273]    [Pg.332]    [Pg.27]    [Pg.414]    [Pg.417]    [Pg.510]    [Pg.525]    [Pg.504]   
See also in sourсe #XX -- [ Pg.11 , Pg.153 ]




SEARCH



Dispersion model

Dispersion modeling

Dispersive flow

© 2024 chempedia.info