Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flavonoids activity with

Antioxidant activity of flavonoids has already been shown about 40 years ago [90,91]. (Early data on antioxidant flavonoid activity are cited in Ref. [92].) Flavonoids are polyphenols, and therefore, their antioxidant activity depends on the reactivity of hydroxyl substituents in hydrogen atom abstraction reactions. As in the case of vitamins E and C, the most studied (and most important) reactions are the reactions with peroxyl radicals [14], hydroxyl radicals [15], and superoxide [16]. [Pg.858]

The ability of flavonoids (quercetin and rutin) to react with superoxide has been shown in both aqueous and aprotic media [59,94]. Then, the inhibitory activity of flavonoids in various enzymatic and nonenzymatic superoxide-producing systems has been studied. It was found that flavonoids may inhibit superoxide production by xanthine oxidase by both the scavenging of superoxide and the inhibition of enzyme activity, with the ratio of these two mechanisms depending on the structures of flavonoids (Table 29.4). As seen from Table 29.4, the data obtained by different authors may significantly differ. For example, in recent work [107] it was found that rutin was ineffective in the inhibition of xanthine oxidase that contradicts the previous results [108,109], The origins of such big differences are unknown. [Pg.859]

Flavanone 3 -hydroxylase (F3 H ECl.14.13.21 CYP75B) activity was initially identified in microsomal preparations of golden weed (Haplopappus gracilis) [110]. E3 H from irradiated parsley cell cultures was later biochemically analyzed and characterized as a cytochrome P450 having an absolute requirement for NADPH and molecular oxygen as cofactors [111]. The enzyme has been shown to have activity with flavanones, flavones, dihydroflavonols, and flavonols, but does not appear to have activity with anthocyanidins [111]. The first cDNA clone for E3 H was isolated from Petunia [112]. It has been suggested that E3 H may serve as an anchor for the proposed flavonoid multi-enzyme complex on the cytosolic surface of the endoplasmic reticulum [44]. [Pg.79]

Enzymatic O-methylation of flavonoids, which is catalyzed by O-methyltransferases (E.C. 2.1.1.6-) involves the transfer of the methyl group of an activated methyl donor, S -adenosyl-L-methionine, to the hydroxyl group of a flavonoid acceptor with the formation of the corresponding methylether and S -adenosyl-L-homocysteine. The latter product is, in... [Pg.123]

The formation of phytoalexins such as glyceollins and phaseollins requires C-prenylation by a range of pterocarpan prenyltransferase (PTP) activities, with dimethylallyl pyrophosphate (DMAPP) as the prenyl donor. For glyceollins and phaseollins, prenylation occurs at position C-2 or C-4 of glycinol or C-10 of 3,9-dihydroxypterocarpan. ° ° However, there are differing activities in other species. For example, in Lupinus albus (white lupin) a prenyltransferase acting at the C-6, -8, and -3 positions of isoflavones has been identified.PTPs have also been characterized in detail for the formation of prenylated flavanones in Sophora flavescens (see, e.g., Ref. 207). However, no cDNA clones for flavonoid-related prenyltransferases have been published to date. [Pg.177]

The isolation of flavonoids from the methanol extract of G. uralensis was carried out under non-basic conditions, because some flavonoids isomerize under basic conditions, e.g. racemization of flavanones and isoflavanones, ring-open reaction of flavanones etc. Bioactive fractions were separated by some chromatographic methods and each step was monitored with anti-H. pylori activity with the paper disk method. Eighteen compounds were isolated from these bioactive fractions and... [Pg.242]

Fig. 2. Schematic diagram delineating some of the multiple stages of mutagenesis and the interference by flavonoids. 1. Flavonoids induce apoptosis and enhance mutagen detoxification and extrusion from the cell. 2. Flavonoids interfere with the metabolic activation of mutagens and protect DNA by means of their antioxidative action. GST glutathione-S-transferase ROM reactive oxygen metabolites. Fig. 2. Schematic diagram delineating some of the multiple stages of mutagenesis and the interference by flavonoids. 1. Flavonoids induce apoptosis and enhance mutagen detoxification and extrusion from the cell. 2. Flavonoids interfere with the metabolic activation of mutagens and protect DNA by means of their antioxidative action. GST glutathione-S-transferase ROM reactive oxygen metabolites.
Different mechanisms have been postulated to contribute to the antitumorigenic activity of flavonoids at the gastrointestinal tract, taking into consideration evidence collected from experiments with both gastrointestinal and nongastrointestinal cell lines. A brief review of these activities with a special emphasis on their relevance in cancer is provided below. [Pg.632]

Flavonoids can also interact with membrane proteins, such as those functioning as receptors, transporters, channels, and enzymes, and potentially affect their biological activities. A summary of recent advances on the study of flavonoid interactions with plasma membrane proteins is presented in Table 4.2. [Pg.114]

Whatever the mechanism of action for the inhibition of 5-lipoxygenase by flavonoids, it appears to be distinct from the antioxidant properties of these compounds. The results comparing antioxidant activity with leukotriene inhibitory activity clearly demonstrate this distinction. The profound effects of metabolic transformation on the anti-inflammation activity of dietary flavonoids such as quercetin must also be considered in relation to in vitro studies, and further highlights the need to use actual metabolic forms of flavonoids rather than the free aglycone or glycosides occurring in the diet. [Pg.144]


See other pages where Flavonoids activity with is mentioned: [Pg.2]    [Pg.306]    [Pg.858]    [Pg.862]    [Pg.870]    [Pg.73]    [Pg.75]    [Pg.77]    [Pg.83]    [Pg.85]    [Pg.190]    [Pg.552]    [Pg.563]    [Pg.116]    [Pg.163]    [Pg.168]    [Pg.169]    [Pg.182]    [Pg.410]    [Pg.423]    [Pg.464]    [Pg.924]    [Pg.963]    [Pg.859]    [Pg.863]    [Pg.871]    [Pg.9]    [Pg.226]    [Pg.90]    [Pg.565]    [Pg.612]    [Pg.618]    [Pg.637]    [Pg.1228]    [Pg.93]    [Pg.240]    [Pg.125]    [Pg.502]   


SEARCH



Flavonoid activation

Flavonoids activity

© 2024 chempedia.info