Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flame ions metals

Recalling Figure 9.4, we know that thermal energy sources, such as a flame, atomize metal ions. But we also know that that these atoms experience resonance between the excited state and ground state such that the emissions that occur when the atoms drop from the excited state back to the ground state can be measured. While there are several techniques that measure such emissions, including flame emissions... [Pg.261]

A FIGURE 7.21 Placed in a flame, ions of each alkali metal emit light of a characteristic wavelength. [Pg.270]

Attainment of equilibrium downstream of flame fronts makes it possible to use flames as media for studying high-temperature thermodynamics. Equilibrium may be approached via collisional ionization or chemi-ionization. When small concentrations of alkali metals are added to flames of low ion content, e.g., hydrogen or carbon monoxide flames, ions are produced by collisional reactions ... [Pg.326]

The positive-ion-molecule reactions in flames can be conveniently divided into those reactions which occur between naturally occurring flame ions and those produced by the addition of other elements, usually metals. [Pg.335]

Recent work by Addecott and Nutt has indicated an interesting correlation between the ion concentration produced by the addition of various metal salts to fuel-rich, smoky flames and their ability to reduce smoke. Since flame ions of the type have been postulated as the... [Pg.345]

The end or front of the plasma flame impinges onto a metal plate (the cone or sampler or sampling cone), which has a small hole in its center (Figure 14.2). The region on the other side of the cone from the flame is under vacuum, so the ions and neutrals passing from the atmospheric-pressure hot flame into a vacuum space are accelerated to supersonic speeds and cooled as rapid expansion occurs. A supersonic jet of gas passes toward a second metal plate (the skimmer) containing a hole smaller than the one in the sampler, where ions pass into the mass analyzer. The sampler and skimmer form an interface between the plasma flame and the mass analyzer. A light... [Pg.88]

Schematic diagram of a flame ionization detector. Ions and electrons formed in the flame provide an electrically conducting path between the flame at earth potential and an insulated cylindrical metal electrode at high potential. surrounding the flame the flow of current is monitored, amplified, and passed to the recording system. Schematic diagram of a flame ionization detector. Ions and electrons formed in the flame provide an electrically conducting path between the flame at earth potential and an insulated cylindrical metal electrode at high potential. surrounding the flame the flow of current is monitored, amplified, and passed to the recording system.
Oxygen and nitrogen also are deterrnined by conductivity or chromatographic techniques following a hot vacuum extraction or inert-gas fusion of hafnium with a noble metal (25,26). Nitrogen also may be deterrnined by the Kjeldahl technique (19). Phosphoms is determined by phosphine evolution and flame-emission detection. Chloride is determined indirecdy by atomic absorption or x-ray spectroscopy, or at higher levels by a selective-ion electrode. Fluoride can be determined similarly (27,28). Uranium and U-235 have been determined by inductively coupled plasma mass spectroscopy (29). [Pg.443]

Organophosphoms compounds, primarily phosphonic acids, are used as sequestrants, scale inhibitors, deflocculants, or ion-control agents in oil wells, cooling-tower waters, and boiler-feed waters. Organophosphates are also used as plasticizers and flame retardants in plastics and elastomers, which accounted for 22% of PCl consumed. Phosphites, in conjunction with Hquid mixed metals, such as calcium—zinc and barium—cadmium heat stabilizers, function as antioxidants and stabilizer adjutants. In 1992, such phosphoms-based chemicals amounted to slightly more than 6% of all such plastic additives and represented 8500 t of phosphoms. Because PVC production is expected to increase, the use of phosphoms additive should increase 3% aimually through 1999. [Pg.383]

The detection and determination of traces of cobalt is of concern in such diverse areas as soflds, plants, fertilizers (qv), stainless and other steels for nuclear energy equipment (see Steel), high purity fissile materials (U, Th), refractory metals (Ta, Nb, Mo, and W), and semiconductors (qv). Useful techniques are spectrophotometry, polarography, emission spectrography, flame photometry, x-ray fluorescence, activation analysis, tracers, and mass spectrography, chromatography, and ion exchange (19) (see Analytical TffiTHODS Spectroscopy, optical Trace and residue analysis). [Pg.371]

The capacity factors of SN-SiO, for metal ions were determined under a range of different conditions of pH, metal ions concentrations and time of interaction. Preconcentration of Cd ", Pb ", Zn " and CvS were used for their preliminary determination by flame atomic absorption spectroscopy. The optimum pH values for quantitative soi ption ai e 5.8, 6.2, 6.5, 7.0 for Pb, Cu, Cd and Zn, respectively. The sorption ability of SN-SiO, to metal ions decrease in line Pb>Cu> >Zn>Cd. The soi ption capacity of the sorbent is 2.7,7.19,11.12,28.49 mg-g Hor Cd, Zn, Pb, andCu, respectively. The sorbent distribution coefficient calculated from soi ption isotherms was 10 ml-g for studied cations. All these metal ions can be desorbed with 5 ml of O.lmole-k HCl (sorbent recovery average out 96-100%). [Pg.274]

Figure 14-9 also shows a flowchart for analysis of wet and dry precipitation. The process involves weight determinations, followed by pH and conductivity measurements, and finally chemical analysis for anions and cations. The pH measurements are made with a well-calibrated pH meter, with extreme care taken to avoid contaminating the sample. The metal ions Ca, Mg, Na, and are determined by flame photometry, which involves absorption of radiation by metal ions in a hot flame. Ammorda and the anions Cl, S04 , NO3 , and P04 are measured by automated colorimetric techniques. [Pg.213]

In 1826 J. J. Berzelius found that acidification of solutions containing both molybdate and phosphate produced a yellow crystalline precipitate. This was the first example of a heteropolyanion and it actually contains the phos-phomolybdate ion, [PMoi204o] , which can be used in the quantitative estimation of phosphate. Since its discovery a host of other heteropolyanions have been prepared, mostly with molybdenum and tungsten but with more than 50 different heteroatoms, which include many non-metals and most transition metals — often in more than one oxidation state. Unless the heteroatom contributes to the colour, the heteropoly-molybdates and -tungstates are generally of varying shades of yellow. The free acids and the salts of small cations are extremely soluble in water but the salts of large cations such as Cs, Ba" and Pb" are usually insoluble. The solid salts are noticeably more stable thermally than are the salts of isopolyanions. Heteropoly compounds have been applied extensively as catalysts in the petrochemicals industry, as precipitants for numerous dyes with which they form lakes and, in the case of the Mo compounds, as flame retardants. [Pg.1014]

Vitreous silica produced by this route contains small amounts of impurities such as Fe, Cr, A1 and Ca. To achieve metal ion impurities < 10 % the synthetic hydrolysed silane process is used. Organic silica compounds or SiCl4 are hydrolysed in a flame to produce fine molten droplets of SiOj which is deposited on a cold base. [Pg.888]

Thus, for example a solution containing potassium ions at a concentration of 2000 mg L "1 added to a solution containing calcium, barium, or strontium ions creates an excess of electrons when the resulting solution is nebulised into the flame, and this has the result that the ionisation of the metal to be determined is virtually completely suppressed. [Pg.794]

An example of a modem instrument of this type is the Coming Model 410 flame photometer. This model can incorporate a lineariser module which provides a direct concentration read-out for a range of clinical specimens. Flame photometers are still widely used especially for the determination of alkali metals in body fluids, but are now being replaced in clinical laboratories by ion-selective electrode procedures (see Section 15.7). [Pg.798]

Low energy ion-molecule reactions have been studied in flames at temperatures between 1000° and 4000 °K. and pressures of 1 to 760 torr. Reactions of ions derived from hydrocarbons have been most widely investigated, and mechanisms developed account for most of the ions observed mass spectrometrically. Rate constants of many of the reactions can be determined. Emphasis is on the use of flames as media in which reaction rate coefficients can be measured. Flames provide environments in which reactions of such species as metallic and halide additive ions may also be studied many interpretations of these studies, however, are at present speculative. Brief indications of the production, recombination, and diffusion of ions in flames are also provided. [Pg.297]

Flames, either with or without metallic additives, are rich in ion-molecule reactions of both positive and negative ions. The use of flames as media in which these reactions may be studied over broad ranges of temperature and pressure is in its infancy. Most of the phenomena observed can be explained qualitatively, and some quantitative results have been obtained. [Pg.318]

Some physical techniques can be classified into flame treatments, corona treatments, cold plasma treatments, ultraviolet (UV) treatment, laser treatments, x-ray treatments, electron-beam treatments, ion-beam treatments, and metallization and sputtering, in which corona, plasma, and laser treatments are the most commonly used methods to modify silicone polymers. In the presence of oxygen, high-energy-photon treatment induces the formation of radical sites at surfaces these sites then react with atmospheric oxygen forming oxygenated functions. [Pg.243]


See other pages where Flame ions metals is mentioned: [Pg.297]    [Pg.104]    [Pg.104]    [Pg.100]    [Pg.345]    [Pg.349]    [Pg.89]    [Pg.258]    [Pg.283]    [Pg.486]    [Pg.322]    [Pg.258]    [Pg.139]    [Pg.197]    [Pg.120]    [Pg.418]    [Pg.160]    [Pg.309]    [Pg.1025]    [Pg.3]    [Pg.184]    [Pg.205]    [Pg.493]    [Pg.316]    [Pg.309]    [Pg.137]    [Pg.90]   


SEARCH



Flame ions

Flame metals

Metal ions, flame test

© 2024 chempedia.info