Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fischer-Tropsch synthesis steady-state production

Dautzenberg et al. (3) have determined the kinetics of the Fischer-Tropsch synthesis with ruthenium catalysts. The authors showed, that because the synthesis can be described by a consecutive mechanism, the non steady state behaviour of the catalyst can give information about the kinetics of the process. On ruthenium they found that not only the overall rate of hydrocarbon production per active site is small, but also that the rate constant of propagation is low. Hence, Dautzenberg et al. find that the low activity of Fischer-Tropsch catalysts is due to the low intrinsic activity of their sites. On the other hand, Rautavuoma (4) states that the low activity of cobalt catalysts is due to a small amount of active sites, the amount being much smaller than the number of adsorption sites measured. [Pg.200]

The compositional modulation technique has been applied to the Fischer-Tropsch synthesis (FTS) reaction [2-5], It was found that the cyclic feeding of CO/H2 had an influence on the selectivity of the FTS products. Among the conclusions was that for an iron catalyst the selectivity for methane increased under periodic operation compared to the steady state operation [5], In the study [5] it was found that the propane/propene ratio increased under periodic operation and the largest changes were with periods between one and ten minutes. Due to the limitations of the anal5dical technique utilized, they could not separate ethane and ethene so that the selectivity basis was for the C3 hydrocarbons. In this study the analytical procedure permitted analysis of products only to the Cg-compoimds. [Pg.201]

The feasibility of increasing the selectivity of the Fischer-Tropsch synthesis by periodic operation is investigated. The process is modeled in a dynamic form using a CSTR reactor. The dynamic behavior of the model corresponds with in literature reported experimental results. The simulation results show a 20% increase in selectivity to Diesel range products compared to the best steady-state solution using a blockprofile. The profile has a cycle time of 1.1 O seconds and consists of a base composition of almost pure carbon monoxide and a pulse of 95% hydrogen and 5% carbon monoxide during 10.8% of the cycle time. [Pg.255]

This study explores the potential of periodic operation for the Fischer-Tropsch synthesis aiming at Diesel range products. The approach followed is modeling the process in a dynamic form using a simple CSTR reactor configuration. The kinetic scheme is based on steady-state data reported in literature. The steady-state behavior is in agreement with experimental observations reported earlier by various research groups. [Pg.262]

The FTS was conducted at varying temperatures (from 483 to 513 K) over approximately 50 h of reaction time in order to investigate the reaction kinetics achieved with the respective catalysts. A typical conversion curve using the Co/ HB catalyst as an example is shown in Figure 2.3. After a short settling phase (caused by the pore filling of liquid Fischer-Tropsch products) of only about 4 h, steady-state conditions were reached. In the observed synthesis period of 50 h no deactivation of the catalysts was detected. However, industrially relevant experiments over several weeks are still outstanding. [Pg.23]


See other pages where Fischer-Tropsch synthesis steady-state production is mentioned: [Pg.209]    [Pg.191]    [Pg.148]    [Pg.3213]    [Pg.247]    [Pg.2027]    [Pg.71]   
See also in sourсe #XX -- [ Pg.202 ]




SEARCH



Fischer products

Fischer-Tropsch product

Fischer-Tropsch synthesi

Fischer-Tropsch synthesis

Fischer-Tropsch synthesis products

Product state

© 2024 chempedia.info