Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fischer cycloaddition

Fischer-type carbene complexes, generally characterized by the formula (CO)5M=C(X)R (M=Cr, Mo, W X=7r-donor substitutent, R=alkyl, aryl or unsaturated alkenyl and alkynyl), have been known now for about 40 years. They have been widely used in synthetic reactions [37,51-58] and show a very good reactivity especially in cycloaddition reactions [59-64]. As described above, Fischer-type carbene complexes are characterized by a formal metal-carbon double bond to a low-valent transition metal which is usually stabilized by 7r-acceptor substituents such as CO, PPh3 or Cp. The electronic structure of the metal-carbene bond is of great interest because it determines the reactivity of the complex [65-68]. Several theoretical studies have addressed this problem by means of semiempirical [69-73], Hartree-Fock (HF) [74-79] and post-HF [80-83] calculations and lately also by density functional theory (DFT) calculations [67, 84-94]. Often these studies also compared Fischer-type and... [Pg.6]

Keywords Fischer carbenes Template synthesis Cocyclization Cycloaddition Cyclopentadienes Cyclopentenones Domino reactions... [Pg.22]

The possibility of being involved in olefin metathesis is one of the most important properties of Fischer carbene complexes. [2+2] Cycloaddition between the electron-rich alkene 11 and the carbene complex 12 leads to the intermediate metallacyclobutane 13, which undergoes [2+2] cycloreversion to give a new carbene complex 15 and a new alkene 14 [19]. The (methoxy)phenylcar-benetungsten complex is less reactive in this mode than the corresponding chromium and molybdenum analogs (Scheme 3). [Pg.24]

The insertion of alkynes into a chromium-carbon double bond is not restricted to Fischer alkenylcarbene complexes. Numerous transformations of this kind have been performed with simple alkylcarbene complexes, from which unstable a,/J-unsaturated carbene complexes were formed in situ, and in turn underwent further reactions in several different ways. For example, reaction of the 1-me-thoxyethylidene complex 6a with the conjugated enyne-ketimines and -ketones 131 afforded pyrrole [92] and furan 134 derivatives [93], respectively. The alkyne-inserted intermediate 132 apparently undergoes 671-electrocyclization and reductive elimination to afford enol ether 133, which yields the cycloaddition product 134 via a subsequent hydrolysis (Scheme 28). This transformation also demonstrates that Fischer carbene complexes are highly selective in their reactivity toward alkynes in the presence of other multiple bonds (Table 6). [Pg.44]

Recently, Akiyama et al. reported an enantiocontrolled [3+2] cycloaddition of chirally modified Fischer alkenylcarbene complexes 180 with aldimines 181 under Lewis-acid catalysis (Sn(OTf)2) to afford enantiomerically pure 1,2,5-trisubstituted 3-alkoxypyrrolines 182 (Scheme 40) [121]. The mode of formation of these products 182 was proposed to be a [4+2] cycloaddition, with the complexes 180 acting as a 1-metalla- 1,3-diene with subsequent reductive elimination. Upon hydrolysis under acidic conditions, the enol ethers give the enantiomerically pure 3-pyrrolidinones 183 (Table 9). [Pg.53]

Cycloaddition Reactions of Group 6 Fischer Carbene Complexes... [Pg.59]

Keywords Fischer carbene complexes Cycloaddition reactions Carbocycles Heterocycles... [Pg.60]

The reactions of Fischer carbene complexes with 1,3-dienes (carbodienes or heterodienes) lead to the formation of cyclic products with different ring sizes depending upon both the nature of the reaction partners and the reaction conditions. Between these synthetically useful transformations are found [2c+2s], [3C+2S], [4S+1C], [3S+3C], [4S+2C], [4S+3C] and [2S+1C+1C0] cycloaddition reactions which will be summarised further on, in addition to the [2S+1C] cycloaddition processes here described. [Pg.66]

The [3S+1C] cycloaddition reaction with Fischer carbene complexes is a very unusual reaction pathway. In fact, only one example has been reported. This process involves the insertion of alkyl-derived chromium carbene complexes into the carbon-carbon a-bond of diphenylcyclopropenone to generate cyclobutenone derivatives [41] (Scheme 13). The mechanism of this transformation involves a CO dissociation followed by oxidative addition into the cyclopropenone carbon-carbon a-bond, affording a metalacyclopentenone derivative which undergoes reductive elimination to produce the final cyclobutenone derivatives. [Pg.71]

The 1,3-dipolar cycloadditions are a powerful kind of reaction for the preparation of functionalised five-membered heterocycles [42]. In the field of Fischer carbene complexes, the a,/ -unsaturated derivatives have been scarcely used in cyclo additions with 1,3-dipoles in contrast with other types of cyclo additions [43]. These complexes have low energy LUMOs, due to the electron-acceptor character of the pentacarbonyl metal fragment, and hence, they react with electron-rich dipoles with high energy HOMOs. [Pg.71]

The first [3S+2C] cycloaddition reaction using a Fischer carbene complex was accomplished by Fischer et al. in 1973 when they reported the reaction of the pentacarbonyl(ethoxy)(phenylethynyl)carbene complex of tungsten and diazomethane to give a pyrazole derivative [45]. But it was 13 years later when Chan and Wulff demonstrated that in fact this was the first example of a 1,3-dipolar cycloaddition reaction [46,47a]. The introduction of a bulky trime-thylsilyl group on the diazomethane in order to prevent carbene-carbon olefi-nation leads to the corresponding pyrazole carbene complexes in better yields (Scheme 15). [Pg.72]

In the same way as arylcarbene complexes, alkenylcarbene complexes typically react with alkynes to provide [3C+2S+1C0] Dotz cycloadducts (see Chap. ccChromium-Templated Benzannulation Reactions , p. 123 in this book). However, some isolated examples involving the formation of five-membered rings through [3C+2S] cycloaddition processes have been reported [71]. In this context, de Meijere et al. found that /J-donor-substituted alkenylcarbene complexes react with alkynes to give cyclopentene derivatives [71a]. This topic is also discussed in detail in Chap.ccThe Multifaceted Chemistry of Variously Substituted a,/J-Unsaturated Fischer Metalcarbenes , p. 21 of this book. [Pg.78]

The participation of carbene/carbenoid metal complexes in [4S+1C] cycloaddition reactions is very infrequent [81]. In fact, only a few examples involving Fischer carbene complexes have been reported in recent years [82]. A remark-... [Pg.84]

At this point the catalytic process developed by Dotz et al. using diazoalkanes and electron-rich dienes in the presence of catalytic amounts of pentacar-bonyl(r]2-ds-cyclooctene)chromium should be mentioned. This reaction leads to cyclopentene derivatives in a process which can be considered as a formal [4S+1C] cycloaddition reaction. A Fischer-type non-heteroatom-stabilised chromium carbene complex has been observed as an intermediate in this reaction [23a]. [Pg.88]

All around this chapter, we have seen that a,/J-unsaturated Fischer carbene complexes may act as efficient C3-synthons. As has been previously mentioned, these complexes contain two electrophilic positions, the carbene carbon and the /J-carbon (Fig. 3), so they can react via these two positions with molecules which include two nucleophilic positions in their structure. On the other hand, alkenyl- and alkynylcarbene complexes are capable of undergoing [1,2]-migration of the metalpentacarbonyl allowing an electrophilic-to-nucleophilic polarity change of the carbene ligand /J-carbon (Fig. 3). These two modes of reaction along with other processes initiated by [2+2] cycloaddition reactions have been applied to [3+3] cyclisation processes and will be briefly discussed in the next few sections. [Pg.88]

S+3C] Heterocyclisations have been successfully effected starting from 4-amino-l-azadiene derivatives. The cycloaddition of reactive 4-amino-1-aza-1,3-butadienes towards alkenylcarbene complexes goes to completion in THF at a temperature as low as -40 °C to produce substituted 4,5-dihydro-3H-azepines in 52-91% yield [115] (Scheme 66). Monitoring the reaction by NMR allowed various intermediates to be determined and the reaction course outlined in Scheme 66 to be established. This mechanism features the following points in the chemistry of Fischer carbene complexes (i) the reaction is initiated at -78 °C by nucleophilic 1,2-addition and (ii) the key step cyclisation is triggered by a [l,2]-W(CO)5 shift. [Pg.103]


See other pages where Fischer cycloaddition is mentioned: [Pg.670]    [Pg.22]    [Pg.22]    [Pg.25]    [Pg.28]    [Pg.50]    [Pg.60]    [Pg.61]    [Pg.61]    [Pg.69]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Alkyne/Fischer carbene cycloaddition

Cycloaddition Fischer carbenes

Fischer carbene complexes alkynyl, cycloaddition

© 2024 chempedia.info