Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Field ion emission

Fig. VIII 4. Field ion emission from clean tungsten. (From Ref. 64.)... Fig. VIII 4. Field ion emission from clean tungsten. (From Ref. 64.)...
With this imaging system it is possible to study virtually all metals and alloys, many semiconductors and some ceramic materials. The image contrast from alloys and two-phase materials is difficult to predict quantitatively, as the effects of variations in chemistry on local field ion emission characteristics are not fully understood. However, in general, more refractory phases image more brightly in the FIM. Information regarding the structure of solid solutions, ordered alloys, and precipitates in alloys has been obtained by FIM. [Pg.6]

T.T. Tsong, Atom-Probe and Field Ion Microscopy Field-Ion Emission and Surfaces and Interfaces at Atomic Resolution, Cambridge University Press, Cambridge, 1990. [Pg.214]

There already exist a few books written on field ion microscopy. Most of these either were published before 1970 when most works were concerned with techniques and methods, or are later ones which emphasize applications to materials science. While some of the basic principles of field ion microscopy remain unchanged from those twenty years ago, when Muller and I wrote a book on the subject, there have been many important new theoretical and technical developments and applications, and also many more detailed studies of a variety of problems in surface science and materials science. In the book just referred to, the subject of atom-probe field ion microscopy was only barely touched. This is of course where most of the new developments are made, and is also the instrument now most actively employed by investigators in the field. In the present volume I try to emphasize basic principles of atom-probe field ion microscopy, field ion emission and applications to surface science. As books emphasizing applications to materials science already exist, only selected topics in this area are presented here. They are used to illustrate the various capabilities of atom-probe field ion microscopy in materials science applications. [Pg.1]


See other pages where Field ion emission is mentioned: [Pg.300]    [Pg.333]    [Pg.294]    [Pg.207]    [Pg.55]    [Pg.4]    [Pg.5]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.40]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.60]    [Pg.62]    [Pg.64]    [Pg.66]    [Pg.68]    [Pg.70]    [Pg.72]    [Pg.74]    [Pg.76]    [Pg.78]    [Pg.80]    [Pg.82]    [Pg.84]    [Pg.86]    [Pg.90]   


SEARCH



Field Emission and Ion Microscopy

Field emission

© 2024 chempedia.info