Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Field-flow fractionation concentration distribution

By coupling flow field-flow fractionation (flow FFF) to ICP-MS it is possible to investigate trace metals bound to various size fractions of colloidal and particulate materials.55 This technique is employed for environmental applications,55-57 for example to study trace metals associated with sediments. FFF-ICP-MS is an ideal technique for obtaining information on particle size distribution and depth profiles in sediment cores in addition to the metal concentrations (e.g., of Cu, Fe, Mn, Pb, Sr, Ti and Zn with core depths ranging from 0-40 cm).55 Contaminated river sediments at various depths have been investigated by a combination of selective extraction and FFF-ICP-MS as described by Siripinyanond et al,55... [Pg.306]

In many separation processes (chromatography, countercurrent distribution, field-flow fractionation, extraction, etc.), the transport of components, in one dimension at least, occurs almost to the point of reaching equilibrium. Thus equilibrium concentrations often constitute a good approximation to the actual distribution of components found within such systems. Equilibrium concepts are especially crucial in these cases in predicting separation behavior and efficacy. [Pg.16]

We note that the distribution is a simple exponential superimposed on the constant background concentration of the solute, J0/v (see Figure 6.2). The effective thickness of the exponential component is seen to be identical in form (but with DT replacing D) to that found for field-flow fractionation, Eq. 6.20 f = DTI u. ... [Pg.118]

The first volume concentrates on separation techniques. H. Pasch summarizes the recent successes of multi-dimensional chromatography in the characterization of copolymers. Both, chain length distribution and the compositional heterogeneity of copolymers are accessible. Capillary electrophoresis is widely and successfully utilized for the characterization of biopolymers, particular of DNA. It is only recently that the technique has been applied to the characterization of water soluble synthetic macromolecules. This contribution of Grosche and Engelhardt focuses on the analysis of polyelectrolytes by capillary electophore-sis. The last contribution of the first volume by Coelfen and Antonietti summarizes the achievements and pitfalls of field flow fractionation techniques. The major drawbacks in the instrumentation have been overcome in recentyears and the triple F techniques are currently advancing to a powerful competitor to size exclusion chromatography. [Pg.218]

Field-flow fractionation (FFF) represents a family of versatile elution techniques suited for the separation and characterization of macromolecules and particles. Separation results from the combination of a nonuniform flow velocity profile of a carrier liquid and a nonuniform transverse concentration profile of an analyte caused by the action of a force field. The field, oriented perpendicularly to the direction of the flow, forms a specific concentration distribution of the analyte inside the channel. Because of the flow velocity profile, different analytes are displaced along the channel with different mean velocities, and, thus, their separation is achieved. [Pg.622]

Another separation technique of particular application for proteins, high-molar-mass molecules, and particles is the general class known as field-flow fractionation (FFF) in its various forms (cross-flow, sedimentation, thermal, and electrical). Once again, MALS detection permits mass and size determinations in an absolute sense without calibration. For homogeneous particles of relatively simple structure, a concentration detector is not required to calculate size and differential size and mass fraction distributions. Capillary hydrodynamic fractionation (CHDF) is another particle separation technique that may be used successfully with MALS detection. [Pg.750]

The association of pollutants such as trace metals, nutrients, and toxic organic molecules to colloids is intimately connected to the health of natural waters. Colloids, with their large specific surface area, play a dominant role in the transportation and eventual deposition of these pollutants. Of particular interest is the size speciation data. It is important to know not only the total amount of pollutant present but also where it is distributed. It has been inherently difficult to study pollutant-colloid interactions because of the lack of methods for particle size determination and fractionation as well as the low concentrations of pollutants present in many systems. This entry outlines a new approach using field-flow fractionation (FFF). [Pg.1210]

Field-flow fractionation (FFF) presents a unique method where particles move in a liquid flow, maintaining a quasi-equilibrium Boltzmann transverse concentration distribution in an FFF channel [1]. It allows one to obtain, from experiments, the transverse Peclet number Pe defining the thickness of the layer, where particles are accumulated, and the retention of the FFF process Ret ... [Pg.1556]

Figure 2 gives some characteristics of the size separation techniques that can be used to study the distribution of trace elements associated with various constituents of natural waters. It is obvious that the dimensions given in the figure are tentative as various factors influence the association/dissociation and aggregation/dispersion processes. However, preservation of real equilibria and labile species of elements, especially at concentrations of less than 10 g 1 prior to analysis is a much more serious problem encountered with methods that are not based on a direct physical separation. From this point of view, membrane filtration as well as some variants of field-flow fractionation (FFF) have advantages, although some uncertainties connected with equilibria shifts always exist. [Pg.2982]

The main purpose of the detector in a field-flow fractionation (FFF) system is to quantitatively determine particle number, volume, or mass concentrations in the FFF size-sorted fractions. Consequently, a number, volume, or mass dependent size distribution of the sample can be derived from detection systems applied to FFF [e.g., (UV-Vis) fluorescence, refractive index, inductively coupled plasma ionization mass spectrometry (ICPMS)]. Further, on-line light scattering detectors can provide additional size and molecular weight distributions of the sample. [Pg.570]

Field flow fractionation is an elution method wherein solutes are separated as they are washed through a column. The FFF channel is empty and an external apphed force is solely responsible for the fractionation phenomenon. As soon as a solute species enters the FFF channel, the external field begins to force it toward the far wall of the channel. As it begins to concentrate at the wall, however, diffusion counteracts additional concentration. Soon, a thin, steady-state layer is established next to the wall. The distribution of the solute species in this layer is exponential and can be expressed as ... [Pg.2005]

One characteristic of shear banded flow is the presence of fluctuations in the flow field. Such fluctuations also occur in some glassy colloidal materials at colloid volume fractions close to the glass transition. One such system is the soft gel formed by crowded monodisperse multiarm (122) star 1,4-polybutadienes in decane. Using NMR velocimetry Holmes et al. [23] found evidence for fluctuations in the flow behavior across the gap of a wide gap concentric cylindrical Couette device, in association with a degree of apparent slip at the inner wall. The timescale of these fluctuations appeared to be rapid (with respect to the measurement time per shear rate in the flow curve), in the order of tens to hundreds of milliseconds. As a result, the velocity distributions, measured at different points across the cell, exhibited bimodal behavior, as apparent in Figure 2.8.13. These workers interpreted their data... [Pg.198]

Other measurements such as gas species and soot all have importance in fire plumes but will not be discussed here. As we have seen for simple diffusion flames, the mixture fraction plays a role in generalizing these spatial distributions. Thus, if the mixture fraction is determined for the flow field, the prospect of establishing the primary species concentration profiles is possible. [Pg.301]


See other pages where Field-flow fractionation concentration distribution is mentioned: [Pg.28]    [Pg.536]    [Pg.175]    [Pg.194]    [Pg.150]    [Pg.675]    [Pg.891]    [Pg.702]    [Pg.187]    [Pg.849]    [Pg.1322]    [Pg.4202]    [Pg.603]    [Pg.819]    [Pg.224]    [Pg.441]    [Pg.2456]    [Pg.3]    [Pg.474]    [Pg.284]    [Pg.172]    [Pg.260]    [Pg.278]    [Pg.279]    [Pg.17]    [Pg.310]    [Pg.376]    [Pg.339]    [Pg.239]    [Pg.503]    [Pg.355]   
See also in sourсe #XX -- [ Pg.206 ]




SEARCH



Concentrate flow

Concentration distribution

Concentration field flow fractionation

Distribution concentrates

Field distribution

Field flow fraction

Field flow fractionator

Field-flow fractionation

Flow distribution

Flow field

Fraction 30 concentrations

Fractional flows

© 2024 chempedia.info