Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty acyl carnitine, transport into mitochondria

Fatty acyl carnitine is transported via a translocase that transports acylcarnitine into and carnitine out of the mitochondrion (Chapter 7). [Pg.191]

Answer The transport of fatty acid molecules into mitochondria requires a shuttle system involving a fatty acyl-carnitine intermediate. Fatty acids are first converted to fatty acyl-CoA molecules in the cytosol (by the action of acyl-CoA synthetases) then, at the outer mitochondrial membrane, the fatty acyl group is transferred to carnitine (by the action of carnitine acyl-transferase I). After transport of fatty acyl-carnitine through the inner membrane, the fatty acyl group is transferred to mitochondrial CoA. The cytosolic and mitochondrial pools of CoA are thus kept separate, and no labeled CoA from the cytosolic pool enters the mitochondrion. [Pg.188]

This three-step process for transferring fatty acids into the mitochondrion—esterification to CoA, transesterification to carnitine followed by transport, and transesterification back to CoA—links two separate pools of coenzyme A and of fatty acyl-CoA, one in the cytosol, the other in mitochondria These pools have different functions. Coenzyme A in the mitochondrial matrix is largely used in oxidative degradation of pyruvate, fatty acids, and some amino acids, whereas cytosolic coenzyme A is used in the biosynthesis of fatty acids (see Fig. 21-10). Fatty acyl-CoA in the cytosolic pool can be used for membrane lipid synthesis or can be moved into the mitochondrial matrix for oxidation and ATP production. Conversion to the carnitine ester commits the fatty acyl moiety to the oxidative fate. [Pg.636]

Transport of the fatty acyl-CoA into the mitochondrion is accomplished via an acyl-carnitine intermediate inside the mitochondrion the fatty acyl-CoA molecule is regenerated. [Pg.40]

Carnitine is used mainly for facilitating the transport of long-chain fatty adds into the mitochondria. As shown in Figure4.53, this transport system requires the participation of two different carnitine acyl transferases. One is located on the outside of the mitochondrial membrane, the other on the inner side. Once fatty acyl-camitine is inside the organelle, its carnitine is released. A separate transport system is used to transport this carnitine from the interior of the mitochondrion back to the cytoplasm for reuse. [Pg.220]

In muscle, most of the fatty acids undergoing beta oxidation are completely oxidized to C02 and water. In liver, however, there is another major fate for fatty acids this is the formation of ketone bodies, namely acetoacetate and b-hydroxybutyrate. The fatty acids must be transported into the mitochondrion for normal beta oxidation. This may be a limiting factor for beta oxidation in many tissues and ketone-body formation in the liver. The extramitochondrial fatty-acyl portion of fatty-acyl CoA can be transferred across the outer mitochondrial membrane to carnitine by carnitine palmitoyltransferase I (CPTI). This enzyme is located on the inner side of the outer mitochondrial membrane. The acylcarnitine is now located in mitochondrial intermembrane space. The fatty-acid portion of acylcarnitine is then transported across the inner mitochondrial membrane to coenzyme A to form fatty-acyl CoA in the mitochondrial matrix. This translocation is catalyzed by carnitine palmitoyltransferase II (CPTII Fig. 14.1), located on the inner side of the inner membrane. This later translocation is also facilitated by camitine-acylcamitine translocase, located in the inner mitochondrial membrane. The CPTI is inhibited by malonyl CoA, an intermediate of fatty-acid synthesis (see Chapter 15). This inhibition occurs in all tissues that oxidize fatty acids. The level of malonyl CoA varies among tissues and with various nutritional and hormonal conditions. The sensitivity of CPTI to malonyl CoA also varies among tissues and with nutritional and hormonal conditions, even within a given tissue. Thus, fatty-acid oxidation may be controlled by the activity and relative inhibition of CPTI. [Pg.398]

Carnitine serves as a cofactor for several enzymes, including carnitine translo-case and acyl carnitine transferases I and II, which are essential for the movement of activated long-chain fatty acids from the cytoplasm into the mitochondria (Figure 11.2). The translocation of fatty acids (FAs) is critical for the genaation of adenosine triphosphate (ATP) within skeletal muscle, via 3-oxidation. These activated FAs become esterified to acylcamitines with carnitine via camitine-acyl-transferase I (CAT I) in the outer mitochondrial membrane. Acylcamitines can easily permeate the membrane of the mitochondria and are translocated across the membrane by carnitine translocase. Carnitine s actions are not yet complete because the mitochondrion has two membranes to cross thus, through the action of CAT II, the acylcar-nitines are converted back to acyl-CoA and carnitine. Acyl-CoA can be used to generate ATP via 3-oxidation, Krebs cycle, and the electron transport chain. Carnitine is recycled to the cytoplasm for fumre use. [Pg.202]

Acyl-CoA synthetase activity towards long-chain fatty-acid substrates is present in the outer mitochondrial membrane. However, fatty acyl-CoAs do not readily traverse biological membranes such as the inner mitochondrial membrane. A highly sophisticated transport system has evolved to allow tight regulation of fatty-acid entry into the mitochondrion (Figure 2). Carnitine palmitoyl transferase 1 (CPTl), located on the inner aspect of the... [Pg.153]

One enzyme regulated by AMPK is acetyl-CoA carboxylase, which produces malonyl-CoA, the first intermediate committed to fatty acid synthesis. Malonyl-CoA is a powerful inhibitor of the enzyme carnitine acyl-transferase I, which starts the process of ]3 oxidation by transporting fatty acids into the mitochondrion (see Fig. 17-6). By phosphorylating and inactivating acetyl-CoA carboxylase, AMPK inhibits fatty acid synthesis while relieving the inhibition (by malonyl-CoA) of )3 oxidation (Fig. 23-37). [Pg.914]

Carnitine is an acyl-group carrier that transports fatty acids into and out of the mitochondrial matrix (Fig. 13-4). Acyl groups are linked by esterification to the hydroxyl group of carnitine by the action of carnitine acyItransferase that resides in the inner membrane of the mitochondrion. [Pg.369]

The most likely deficiency is a lack of 2,4-dienoyl CoA reductase, an enzyme that is essential for the degradation of unsaturated fatty acids with double bonds at even-numbered carbons. Such fatty acids include linoleate (9-ds,12-ds 18 2). Four rounds of oxidation of linoleoyl CoA generate a 10-carbon acyl CoA that contains a trans-A and a cis-A double bond. This intermediate is a substrate for the reductase, which converts the 2,4-dienoyl CoA to ds-A -enoyl CoA. A dehciency of 2,4-dienoyl reductase leads to an accumulation of trans-A, ds-A -decadienoyl CoA molecules in the mitochondrion. The observation that carnitine derivatives of the 2,4-dienoyl CoA are found in blood and urine provides evidence that these molecules accumulate in the mitochondrion and are then attached to carnitine. Formation of carnitine decadienoate allows the acyl molecules to be transported across the inner mitochondrial membrane into the cytosol, and then into the circulation. [Pg.402]

Acylcarnitine can cross only the inner mitochondrial membrane on a countertransport system that takes in acylcarnitine in exchange for free carnitine being returned to the inter-membrane space. Once inside the mitochondrial inner membrane, acylcarnitine transfers the acyl group onto CoA ready to undergo -oxidation. This counter-transport system provides regulation of the uptake of fatty acids into the mitochondrion for oxidation. As long as there is free CoA available in the mitochondrial matrix, fatty acids can be taken up and the carnitine returned to the outer membrane for uptake of more fatty acids. However, if most of the CoA in the mitochondrion is acylated, then there is no need for further fatty uptake immediately and, indeed, it is not possible. [Pg.151]


See other pages where Fatty acyl carnitine, transport into mitochondria is mentioned: [Pg.392]    [Pg.450]    [Pg.399]    [Pg.34]    [Pg.382]    [Pg.16]   
See also in sourсe #XX -- [ Pg.190 , Pg.191 ]




SEARCH



Acyl-carnitines

Carnitin

Carnitine

Fatty Mitochondria

Fatty acyl

Fatty acyl carnitine, transport into

Fatty acylation

Mitochondria transport into

© 2024 chempedia.info