Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty acid synthesis and

In the chloride shift, Ck plays an important role in the transport of carbon dioxide (qv). In the plasma, CO2 is present as HCO, produced in the erythrocytes from CO2. The diffusion of HCO requires the counterdiffusion of another anion to maintain electrical neutraUty. This function is performed by Ck which readily diffuses into and out of the erythrocytes (see Fig. 5). The carbonic anhydrase-mediated Ck—HCO exchange is also important for cellular de novo fatty acid synthesis and myelination in the brain (62). [Pg.381]

FIGURE 25.16 Regulation of fatty acid synthesis and fatty acid oxidation are conpled as shown. Malonyl-CoA, produced during fatty acid synthesis, inhibits the uptake of fatty acylcarnitine (and thus fatty acid oxidation) by mitochondria. When fatty acyl CoA levels rise, fatty acid synthesis is inhibited and fatty acid oxidation activity increases. Rising citrate levels (which reflect an abundance of acetyl-CoA) similarly signal the initiation of fatty acid synthesis. [Pg.818]

Generally, NAD-linked dehydrogenases catalyze ox-idoreduction reactions in the oxidative pathways of metabolism, particularly in glycolysis, in the citric acid cycle, and in the respiratory chain of mitochondria. NADP-linked dehydrogenases are found characteristically in reductive syntheses, as in the extramitochon-drial pathway of fatty acid synthesis and steroid synthesis—and also in the pentose phosphate pathway. [Pg.87]

The citric acid cycle is amphibolic, since in addition to oxidation it is important in the provision of carbon skeletons for gluconeogenesis, fatty acid synthesis, and interconversion of amino acids. [Pg.135]

Fmctose bypasses the main regulatory step in glycolysis, catalyzed by phosphofmctokinase, and stimulates fatty acid synthesis and hepatic triacylglycerol secretion. [Pg.172]

Insulin stimulates lipogenesis by several other mechanisms as well as by increasing acetyl-CoA carboxylase activity. It increases the transport of glucose into the cell (eg, in adipose tissue), increasing the availability of both pyruvate for fatty acid synthesis and glycerol 3-phosphate for esterification of the newly formed fatty acids, and also converts the inactive form of pyruvate dehydrogenase to the active form in adipose tissue but not in liver. Insulin also—by its ability to depress the level of intracellular cAMP—inhibits lipolysis in adipose tissue and thereby reduces the concentration of... [Pg.178]

Pantothenic acid Functional part of CoA and acyl carrier protein fatty acid synthesis and metabolism ... [Pg.482]

Triose phosphate isomerase (TPI) catalyzes the interconversion of glyceralde-hyde-3-phosphate and dihydoxyacetone phosphate and has an important role in glycolysis, gluconeogenesis, fatty acid synthesis, and the hexose monophosphate pathway. Red blood cell TPI activity measured in vitro is approximately 1000 times that of Hx, the least active glycolytic enzyme. TPI is a dimer of identical subunits, each of molecular weight 27,000, and does not utilize cofactors or metal ions. Posttranslational modification of one or both subunits may occur by deamidination, resulting in multiple forms of the enzymes and creating a complex multibanded pattern on electrophoresis. [Pg.8]

Pathways for fatty acid synthesis and breakdown are given in Appendix 2. [Pg.123]

Biosynthesis and degradation of glycosaminoglycans biosynthesis of collagen, mineralization and demineralization of bone. Fatty acid synthesis and triglyceride storage in adipocytes promoted by insulin and triglyceride hydrolysis and fatty acid release stimulated by glucagon and adrenaline (epinephrine). [Pg.283]

Synthesis of fatty acid and thence triacylglycerol, via the fatty acid synthesis and the esterification pathways (Chapter 11). [Pg.161]

Figure 11.4 Condensation, dehydration and reduction reactions in fatty add synthesis. These reactions constitute the major components of the pathway of fatty acid synthesis and are all catalysed by fatty acid synthase. The reduction reactions, indicated by addition of 2H in the diagram, involve the conversion of NADPH to NADP . (The re-conversion of NADP back to NADPH occurs in the pentose phosphate pathway.) The condensation reaction results in an increase in size of acyl-ACP by two carbon units in each step. The two carbons for each extension are each provided by malonyl-CoA. ACP - acyl carrier protein. Figure 11.4 Condensation, dehydration and reduction reactions in fatty add synthesis. These reactions constitute the major components of the pathway of fatty acid synthesis and are all catalysed by fatty acid synthase. The reduction reactions, indicated by addition of 2H in the diagram, involve the conversion of NADPH to NADP . (The re-conversion of NADP back to NADPH occurs in the pentose phosphate pathway.) The condensation reaction results in an increase in size of acyl-ACP by two carbon units in each step. The two carbons for each extension are each provided by malonyl-CoA. ACP - acyl carrier protein.
Pantothenic acid (vitamin B5) is both present in many nutrientcients and it is also produced by intestinal bacteria. Deficiency is therefore thought to be unlikely. Its active form, 4-phosphopantetheine, is an element of both coenzyme-A and acyl-carrier protein and thus participates in fatty acid synthesis and in the posttranslational modification of proteins. Acetylcoenzyme-A is important for the synthesis of the neurotransmitter acetylcholine. [Pg.474]

If fatty acid synthesis and J8 oxidation were to proceed simultaneously, the two processes would constitute a futile cycle, wasting energy. We noted earlier (see Fig. 17-12) that /3 oxidation is blocked by malonyl-CoA, which inhibits carnitine acyltransferase I. Thus during fatty acid synthesis, the production of the first intermediate, malonyl-CoA, shuts down J8 oxidation at the level of a transport system in the mitochondrial inner membrane. This control mechanism illustrates another advantage of segregating synthetic and degradative pathways in different cellular compartments. [Pg.797]

FIGURE 21-19 Regulation of triacylglycerol synthesis by insulin. Insulin stimulates conversion of dietary carbohydrates and proteins to fat. Individuals with diabetes mellitus lack insulin in uncontrolled disease, this results in diminished fatty acid synthesis, and the acetyl-CoA arising from catabolism of carbohydrates and proteins is shunted instead to ketone body production. People in severe ketosis smell of acetone, so the condition is sometimes mistaken for drunkenness (p. 909). [Pg.806]

FIGURE 23-37 Regulation of fatty acid synthesis and /8 oxidation by AMPK action on acetyl-CoA carboxylase. When... [Pg.915]

Some effects of prostaglandins are mediated through cell surface G-protein coupled receptors (see Chapter ll).306 Some other prostanoids bind to and activate nuclear peroxisome proliferator-activated receptors.306 PGJ2 may inhibit fatty acid synthesis and fat deposition in adipose tissue through these receptors. Some of the prostanoid derivatives enter membranes and may become incorporated into phospholipids and exert their effects there. [Pg.1211]

Fatty acid synthesis and breakdown both occur in steps involving 2 carbon units but by totally different mechanisms. [Pg.411]

The Reduction Reactions. The object of the next three reactions (steps 4 to 6 in fig. 18.12a) is to reduce the 3-carbonyl group to a methylene group. The carbonyl is first reduced to a hydroxyl by 3-ketoacyl-ACP reductase. Next, the hydroxyl is removed by a dehydration reaction catalyzed by 3-hydroxyacyl-ACP dehydrase with the formation of a trans double bond. This double bond is reduced by NADPH catalyzed by 2,3-trans-enoyl-ACP reductase. Chemically, these reactions are nearly the same as the reverse of three steps in the j6-oxidation pathway except that the hydroxyl group is in the D-configuration for fatty acid synthesis and in the L-configuration for /3 oxidation (compare figs. 18.4a and 18.12a). Also remember that different cofactors, enzymes and cellular compartments are used in the reactions of fatty acid biosynthesis and degradation. [Pg.421]

Before discussing the specific aspects of regulation of fatty acid metabolism, let us review the main steps in fatty acid synthesis and degradation. Figure 18.18 illustrates these processes in a way that emphasizes the parallels and differences. In both cases, two-carbon units are involved. However, different enzymes and coenzymes are utilized in the biosynthetic and degradative processes. Moreover, the processes take place in different compartments of the cell. The differences in the location of the two processes and in the... [Pg.427]

Goodridge, A. G., Fatty acid synthesis in eucaryotes. In D. E. Vance, and J. E. Vance (eds.), Biochemistry of Lipids, Lipoproteins and Membranes. Amsterdam Elsevier Science Publishers, 1991. Provides an advanced treatment of the regulation of fatty acid synthesis and cites other key references related to this topic. [Pg.433]


See other pages where Fatty acid synthesis and is mentioned: [Pg.379]    [Pg.212]    [Pg.495]    [Pg.96]    [Pg.96]    [Pg.179]    [Pg.211]    [Pg.299]    [Pg.161]    [Pg.167]    [Pg.168]    [Pg.399]    [Pg.166]    [Pg.198]    [Pg.286]    [Pg.590]    [Pg.643]    [Pg.914]    [Pg.915]    [Pg.179]    [Pg.526]    [Pg.1002]    [Pg.427]    [Pg.433]    [Pg.597]    [Pg.200]    [Pg.613]    [Pg.70]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Fatty Acid Synthesis and Metabolism

Fatty Acids Originate from Three Sources Diet, Adipocytes, and de novo Synthesis

Fatty Synthesis

Fatty acids synthesis and degradation

Fatty acids, synthesis

Sources of Carbon and Reducing Equivalents for Fatty Acid Synthesis

The Controls for Fatty Acid Metabolism Discourage Simultaneous Synthesis and Breakdown

© 2024 chempedia.info