Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extinction distribution

The thermodynamic equilibria are illustrated in Figures 1 and 2. Figure 1 shows the resulting composition after pure pseudocumene or a recycle mixture of C PMBs is disproportionated with a strong Friedel-Crafts catalyst. At 127°C (400 K), the reactor effluent contains approximately 3% toluene, 21% xylenes, 44% C PMBs, 29% C q PMBs, and 3% pentamethylbenzene. The equihbrium composition of the 44% C PMB isomers is shown in Figure 2. Based on the values at 127°C, the distribution is 29.5% mesitylene, 66.0% pseudocumene, and 4.5% hemimellitene (Fig. 2). After separating mesitylene and hemimellitene by fractionation, toluene, xylenes, pseudocumene (recycle plus fresh), C q PMBs, and pentamethylbenzene are recycled to extinction. [Pg.506]

Point measurement, requires assumption of homogeneous distribution of particles neglects extinction from absorption, coarse particles (>3-10 fim must consider humidity effects at high relative humidity... [Pg.210]

The movement of Earth s crustal plates and the continents they contain - continental drift -has had enormous effects on climate, sea levels, and the distributions of organisms. Mass extinctions of organisms have usually accompanied major drops in sea levels. The collision of all the continents to form the gigantic landmass called Pangaea about 260 million years ago, triggered massive volcanic eruptions. The volcanoes... [Pg.41]

Profile comparison of temperature, velocity, major species (CH, Oj, CO, COj, and HjO), and minor species (H, O, and OH) at the extinction state using different outer-flow conditions, for counterflow twin-stoichiometric methane/air flames. For clarity, the symbols do not represent the actual grid distribution employed in the calculation. [Pg.121]

In order to calculate particle size distributions in the adsorption regime and also to determine the relative effects of wavelength on the extinction cross section and imaginary refractive index of the particles, a series of turbidity meas irements were made on the polystyrene standards using a variable wavelength UV detector. More detailed discussions are presented elsewhere (23) > shown here is a brief summary of some of the major results and conclusions. [Pg.16]

An isotropic extinction parameter, of type I and Lorentzian distribution (in the formalism of Becker and Coppens [16]), was also refined. The motions of the non-H atoms were described by anisotropic parameters, while those of the H atoms by isotropic B s. All these displacement parameters were included among the refinable quantities of the model, for a total of 1161 variables in a single least-squares matrix. [Pg.288]

The density of Bronstcd and Lewis acid sites was determined by IR spectroscopy (Nicolet 710) of adsorbed pyridine, after desorption at 250°C, using the molar extinction coefficients previously obtained by Emeis [11]. The acid strength distribution of selected zeolites was studied by NH3-TPD in an Autochem 2910 Equipment (Micromeritics) coupled to a quadrupole mass spectrometer. First, NH3 was adsorbed at 175°C until saturation and then desorbed by increasing the temperature up to 800°C at a heating rate of 10°C/min. [Pg.322]

The near-absence of DLAs with log N/n > 13.2, corresponding to an obscuration of the order of one magnitude in the rest-frame UV, supports the existence of some obscuration and implies some biases in the H I column density distribution and perhaps in the column-density-weighted metallicity, but these cannot be very large (Akerman et at. 2005). The type of object that can be missed is one not shown in the figure a system at a redshift of 0.52 towards the BL Lac object4 AO 0235 +164, with an H I log column density of about 21.7, Z (0.7 0.3) Z and about 1/2 to 1 magnitude of extinction in the visible (Junkkarinen et at. 2004). [Pg.387]

The aromatic amino acids each have two major absorption bands in the wavelength region between 200 and 300 nm (see reviews by Beaven and Holiday(13) and Wetlaufer(14). The lower energy band occurs near 280 nm for tryptophan, 277 nm for tyrosine, and 258 nm for phenylalanine, and the extinction coefficients at these wavelengths are in the ratio 27 7 l.(14) As a result of the spectral distributions and relative extinction coefficients of the aromatic amino acids, tryptophan generally dominates the absorption, fluorescence, and phosphorescence spectra of proteins that also contain either of the other two aromatic amino acids. [Pg.2]

T-O-T stretch measured by framework IR, as discussed in Section 4.5.3.2. The comparison of areas as described above does provide quantitative information about the relative changes in acidity between the samples since the area is direction proportional to the concentration (Beer-Lambert law, discussed in Section 4.5.2.) It most cases, this relative, but quantitative comparison between samples is sufficient to provide information about how various treatments or modifications have altered acid site distributions. Since extinction coefficients can change with zeolite type (Table 4.5), these comparisons are best for samples of the same zeolite type. Therefore, caution should be used when comparing data from samples with different zeolite structures. [Pg.129]

Beyond the gel point, the bonds Issuing from a monomer unit can have finite or Infinite continuation. If the continuation Is finite, the Issuing subtree Is also only finite If the continuation Is Infinite, the unit Is bound via this bond to the "infinite" gel. The classification of bonds with respect to whether they have finite or Infinite continuation enables a relatively detailed statistical description of the gel structure. The probability of finite continuation of a bond Is called the extinction probability. The extinction probability Is obtained In a simple way from the distribution of units In generation g>0. This distribution Is obtained from the distribution of units In the root g-0 (for more details see Ref. 6). [Pg.4]


See other pages where Extinction distribution is mentioned: [Pg.377]    [Pg.23]    [Pg.134]    [Pg.229]    [Pg.451]    [Pg.705]    [Pg.54]    [Pg.307]    [Pg.132]    [Pg.142]    [Pg.156]    [Pg.155]    [Pg.146]    [Pg.309]    [Pg.390]    [Pg.81]    [Pg.82]    [Pg.82]    [Pg.86]    [Pg.97]    [Pg.527]    [Pg.364]    [Pg.410]    [Pg.290]    [Pg.32]    [Pg.40]    [Pg.202]    [Pg.383]    [Pg.198]    [Pg.49]    [Pg.254]    [Pg.5]    [Pg.64]    [Pg.107]    [Pg.219]    [Pg.92]    [Pg.137]    [Pg.426]    [Pg.427]    [Pg.104]   
See also in sourсe #XX -- [ Pg.93 , Pg.96 ]




SEARCH



Extinction

© 2024 chempedia.info