Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Explosives PBX

There is also an as-yet small but growing class of formulations known as PBX Plastic Bonded Explosive. PBXs are similar to rubber-base, composite rocket proplnts in that they consist of 85% or so of powdered high-energy explosive incorporated into a plastic matrix (which can be a conventional plastic or a double-base) and cast into place. [Pg.796]

Understanding the condensed-phase properties of HE materials is important for determining stability and performance. Information regarding HE material properties [such as the physical, chemical, and mechanical behaviors of the constituents in plastic-bonded explosive (PBX) formulations] is necessary for efficiently building the next generation of explosives as the quest for more powerful energetic materials (in terms of energy per volume) moves forward.1... [Pg.159]

Formals and acetals prepared from the reaction of polynitroaliphatic alcohols with formaldehyde and acetaldehyde have found use as explosive plastisizers for nitrocellulose and in plastic bonded explosives (PBXs). Formals of polynitroaliphatic alcohols are commonly prepared via reaction with trioxane or paraformaldehyde in the presence of sulfuric acid as a condensing agent. Bis(2,2-dinitropropyl)formal (175) is prepared from the reaction of trioxane with 2,2-dinitropropanol (25). The reaction of 2,2,2-trinitroethanol (159) and 2,2-dinitro-l,3-propanediol (19) with formaldehyde in the presence of sulfu-... [Pg.48]

Pentaerythritol tetranitrate (PETN) (3) is a powerful explosive which exhibits considerable brisance on detonation (VOD 8310 m/s at = 1.77 g/cm ). It is the most stable and least reactive of the common nitrate ester explosives. The relatively high sensitivity of PETN to friction and impact means that it is usually desensitized with phlegmatizers like wax and the product is used in detonation cord, boosters and as a base charge in detonators. Pentaerythritol tetranitrate can be mixed with synthetic polymers to form plastic bonded explosives (PBXs) like detasheet and Semtex-IA. A cast mixture of PETN and TNT in equal proportions is known as pentolite and has seen wide use as a military explosive and in booster charges. The physical, chemical and explosive properties of PETN commend its use as a high explosive. [Pg.88]

Plastic-Bonded Explosives (PBX) A high explosive in a pliable plastic matrix, i.e., C4, Det flex. [Pg.196]

Even explosives must conform to regulations. Polymer bound explosives (PBXs) and Class 1.1 military propellants have been reformulated for use in the mining industry. There is a minimal waste stream (Wulfman et al., 1997). [Pg.246]

There are a number of inert binders such as polyester, epoxy, polysulfide, polyurethane which have been reported as binders for composite propellants and plastic bonded explosives (PBXs). At present, hydroxy-terminated polybutadiene (HTPB) is regarded as the state-of-the-art workhorse binder for such applications. However, the recent trend is to use energetic binders such as poly [3,3-bis(azidomethyl oxetane)] [poly(BAMO)], poly (3-azidomethyl-3-methyl oxetane) [poly(AMMO)], PNP, GAP diol and triol, nitrated HTPB(NHTPB), poly(NiMMO), poly(GlyN) and nitrated cyclodextrin polymers poly(CDN) for PBXs and composite propellants in order to get better performance. [Pg.115]

Polymer bonded explosives (PBXs) were developed to reduce the sensitivity of the newly-synthesized explosive crystals by embedding the explosive crystals in a rubber-like polymeric matrix. The first PBX composition was developed at the Los Alamos Scientific Laboratories in USA in 1952. The composition consisted of RDX crystals embedded in plasticized polystyrene. Since 1952, Lawrence Livermore Laboratories, the US Navy and many other organizations have developed a series of PBX formulations, some of which are listed in Table 1.2. [Pg.11]

Polymeric materials can be added to secondary explosives to produce polymer bonded explosives (PBXs). The polymers are generally used in... [Pg.47]

Since about 1950 polymer-bonded (or plastic-bonded) explosives (PBX) have been developed in order to reduce sensivity and to facilitate safe and easy handling. PBX also show improved processibility and mechanical properties. In such materials the crystalline explosive is embedded in a rubber-like polymeric matrix. One of the most prominent examples of a PBX is Semtex. Semtex was invented in 1966 by Stanislav Brebera, a chemist who worked for VCHZ Synthesia in Semtin (hence the name Semtex), a suburb of Pardubice in the Czech Republic. Semtex consists of varying ratios of PETN and RDX. Usually polyisobutylene is used for the polymeric matrix, and phthalic acid n-octylester is the plasticizer. Other polymer matrices which have been introduced are polyurethane, polyvinyl alcohol, PTFE (teflon), Viton, Kel-F and various polyesters. [Pg.10]

Extruding is usually carried out using a screw-type extruding machine as it is known from the plastic industry. In this process, the explosive and polymer binder are pre-mixed and then mixed, compressed and extruded through a small hole under high pressure using the extruder. This process is particularly suitable for the preparation of polymer bound explosives (PBXs). [Pg.244]


See other pages where Explosives PBX is mentioned: [Pg.24]    [Pg.69]    [Pg.247]    [Pg.554]    [Pg.734]    [Pg.734]    [Pg.54]    [Pg.116]    [Pg.248]    [Pg.326]    [Pg.110]    [Pg.110]    [Pg.58]    [Pg.95]    [Pg.122]    [Pg.163]    [Pg.258]    [Pg.418]    [Pg.435]    [Pg.41]    [Pg.42]    [Pg.147]    [Pg.404]    [Pg.279]    [Pg.342]    [Pg.403]    [Pg.1748]    [Pg.5]    [Pg.328]   
See also in sourсe #XX -- [ Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.41 , Pg.42 , Pg.47 , Pg.48 , Pg.65 , Pg.133 , Pg.147 ]




SEARCH



PBXs

© 2024 chempedia.info