Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excited interfacial electron transfer

Rapid e / h recombination, the reverse of equation 3, necessitates that D andM be pre-adsorbed prior to light excitation of the Ti02 photocatalyst. In the case of a hydrated and hydroxylated Ti02 anatase surface, hole trapping by interfacial electron transfer occurs via equation 6 to give surface-bound OH radicals (43,44). The necessity for pre-adsorbed D andM for efficient charge carrier trapping calls attention to the importance of adsorption—desorption equihbria in... [Pg.403]

This case is shown in Fig. 10.6c and d where through absorption of light a photohole in the vb and a photoelectron in the cb are formed. The probability that interfacial electron transfer takes place, i.e. that a thermodynamically suitable electron donor is oxidized by the photohole of the vb depends (i) on the rate constant of the interfacial electron transfer, kET, (ii) on the concentration of the adsorbed electron donor, [Rads]. and (iii) on the rate constants of recombination of the electron-hole pair via radiative and radiationless transitions,Ykj. At steady-state of the electronically excited state, the quantum yield, Ox, ofinterfacial electron-transfer can be expressed in terms of rate constants ... [Pg.348]

The discussion which follows is divided into two main sections. The first termed antenna sensitizers presents studies of polynuclear compounds with a surface bound unit that can accept energy from covalently linked chromophoric groups and inject electrons into the semiconductor from its excited state. The second describes supramolecular assemblies designed to promote intramolecular and interfacial electron transfer upon light absorption. [Pg.5]

The dynamics of the interfacial electron-transfer between Dye 2 and TiOz were examined precisely by laser-induced ultrafast transient absorption spectroscopy. Durrant et al.38) employed subpicosecond transient absorption spectroscopy to study the rate of electron injection following optical excitation of Dye 2 adsorbed onto the surface of nanocrystalline Ti02 films. Detailed analysis indicates that the injection is at least biphasic, with ca. 50% occurring in <150 fsec (instrument response limited) and 50% in 1.2 0.2 psec. [Pg.347]

The equation can also be illustrated in Figure 9.1. When a semiconductor such as Ti02 absorbs photons, the valence band electrons are excited to the conduction band. For this to occur, the energy of a photon must match or exceed the band-gap energy of the semiconductor. This excitation results in the formation of an electronic vacancy or positive hole at the valence band edge. A positive hole is a highly localized electron vacancy in the lattice of the irradiated Ti02 particle. This hole can initiate further interfacial electron transfer with the surface bound anions. [Pg.338]

Figure 5.4, one can easily understand why the interfacial electron transfer should take place in the 10-100 fsec range because this ET process should be faster than the photo-luminescence of the dye molecules and energy transfer between the molecules. Recently Zimmermann et al. [58] have employed the 20 fsec laser pulses to study the ET dynamics in the DTB-Pe/TiC>2 system and for comparison, they have also studied the excited-state dynamics of free perylene in toluene solution. Limited by the 20 fsec pulse-duration, from the uncertainty principle, they can only observe the vibrational coherences (i.e., vibrational wave packets) of low-frequency modes (see Figure 5.5). Six significant modes, 275, 360, 420, 460, 500 and 625 cm-1, have been resolved from the Fourier transform spectra of ultrashort pulse measurements. The Fourier transform spectrum has also been compared with the Raman spectrum. A good agreement can be seen (Figure 5.5). For detail of the analysis of the quantum beat, refer to Figures 5.5-5.7 of Zimmermann et al. s paper [58], These modes should play an important role not only in ET dynamics or excited-state dynamics, but also in absorption spectra. Therefore, the steady state absorption spectra of DTB-Pe, both in... Figure 5.4, one can easily understand why the interfacial electron transfer should take place in the 10-100 fsec range because this ET process should be faster than the photo-luminescence of the dye molecules and energy transfer between the molecules. Recently Zimmermann et al. [58] have employed the 20 fsec laser pulses to study the ET dynamics in the DTB-Pe/TiC>2 system and for comparison, they have also studied the excited-state dynamics of free perylene in toluene solution. Limited by the 20 fsec pulse-duration, from the uncertainty principle, they can only observe the vibrational coherences (i.e., vibrational wave packets) of low-frequency modes (see Figure 5.5). Six significant modes, 275, 360, 420, 460, 500 and 625 cm-1, have been resolved from the Fourier transform spectra of ultrashort pulse measurements. The Fourier transform spectrum has also been compared with the Raman spectrum. A good agreement can be seen (Figure 5.5). For detail of the analysis of the quantum beat, refer to Figures 5.5-5.7 of Zimmermann et al. s paper [58], These modes should play an important role not only in ET dynamics or excited-state dynamics, but also in absorption spectra. Therefore, the steady state absorption spectra of DTB-Pe, both in...
Interfacial electron transfer between a metal and an excited sensitizer, A -L- B where B represents a metal electrode, may be reductive, whereby the electron transfers from the conduction band of the metal to the singly occupied HOMO state of the excited adsorbed molecules, thus resulting in A -L-B and a cathodic photocurrent at the electrode. Alternatively, it may be an oxidative process, wherein the electron is transferred from the adsorbate to the metal, so resulting in A+-L-B and an anodic photocurrent at the electrode. [Pg.53]

Alternatively, charge injection into the semiconductor can involve the reductive or oxidative quenching of the dye excited state by a redox-active species (a supersensitizer (S)), followed by thermal interfacial electron transfer ... [Pg.55]

Niemeyer et al. have reported the design of quantum dot/enzyme nanohybrids that are capable of catalyzing an organic transformation upon optical excitation of semiconductor quantum dots (QDs) [31]. The hybrid device was composed of semiconductor CdS nanoparticles and cytochrome p450BSp enzyme. It has been proposed that irradiation of QDs leads to formation of excitons (h+-e pairs) that on dissociation generate superoxide and hydroxyl radicals in interfacial electron transfer process (see Chapter 7). These radicals in turn activate the enzyme adsorbed at the QD surface. The activated enzyme is able to catalyze mono-oxygenation of fatty acids, but has a lower activity than the native enzyme [31]. [Pg.195]

In order to account for such a mechanism, photochemical excitation of a semiconductor surface might induce the promotion of an electron from the valence band to the conduction band. Since relaxation of the high-energy electron is inhibited by the absence of intra-states, if the lifetime of this photo generated electron-hole pair is sufficiently long to allow the interfacial electron transfer from an accumulation site to an electron acceptor, as well as the interfacial electron transfer from an adsorbed organic donor to the valence-band hole, the irradiated semiconductor can simultaneously catalyze both oxidation and reduction reactions in a fashion similar to multifunctional enzymes reactions [232]. [Pg.161]

One particularly appealing route for effecting controlled redox reactions involves an array of surface-mediated reactions initiated by ultraviolet irradiation of suspended semiconductor particles [3-13]. Such reactions involve band-gap excitation of the semiconductor, interfacial electron transfer, and secondary dark chemical reactions of singly oxidized and reduced adsorbates. Because the semiconductor surface is restored to its original structure and oxidation level after these transformations, these photoreactions are often called photocatalytic, leaving the light-responsive photocatalyst ready to act as initiator for another cycle. The use of such photocatalysts also obviates the need to acquire expensive electrochemical equipment. [Pg.349]

Importantly, it was found [80-82, 311] that interfacial electron transfer from MLCT-excited Ru polypyridine complexes to Ti02 is an ultrafast process, completed in 25-150 fs This groundbreaking discovery implies that the search for new sensitizers need not to be limited to complexes with long-lived excited states. Indeed, [Fe(4,4 -(COOH)2-bpy)2(CN)2], whose MLCT excited state lifetime is only ca 330 ps, was found [304] to act as a sensitizer in a Ti02-based solar cell. In fact, even the classical Gratzel cell [36, 77, 78] would not operate as well as it does, were the interfacial electron transfer not ultrafast, since the [Ru(4,4 -(COOH)2-bpy)2-(NCS)2] sensitizer has an inherent excited state lifetime of only 50 ns. [Pg.1515]

There are two possible excited state interfacial electron transfer processes that can occur from a molecular excited state, S, created at a metal surface (a) the metal accepts an electron from S to form S+ or (b) the metal donates an electron to S to form S . Neither of these processes has been directly observed. The two processes would be competitive and unless there is some preference, no net charge will cross the interface. In order to obtain a steady-state photoelectrochemical response, back interfacial electron transfer reactions of S+ (or S ) to yield ground-state products must also be eliminated. Energy transfer from an excited sensitizer to the metal is thermodynamically favorable and allowed by both Forster and Dexter mechanisms [20, 21]. There exists a theoretical [20] and experimental [21] literature describing energy transfer quenching of molecular excited states by metals. How-... [Pg.2733]

Figure 5. Excited state interfacial electron transfer reactions that can lead to a) anodic, and b) cathodic photocurrent at a metal surface in the presence of electron donor D and acceptor A respectively. Figure 5. Excited state interfacial electron transfer reactions that can lead to a) anodic, and b) cathodic photocurrent at a metal surface in the presence of electron donor D and acceptor A respectively.
The addition of electron donors or acceptors to the external electrolyte has allowed sustained photocurrents to be measured at sensitized metal interfaces, but the mechanism(s) often remain speculative. A photocurrent can be generated by excited state interfacial electron transfer like that shown in Figure 5, or by inter-molecular excited state electron transfer followed by dark redox reactions at the electrode. It can be experimentally difficult to distinguish between these distinct mechanisms and strong evidence exists only for the latter pathway which forms the basis of the photogalvanic cell. [Pg.2734]

The accepted model for photocurrent generation in the dye-sensitized nanocrystalline solar cells involves excited state interfacial electron transfer. It is therefore desirable to have a mechanistic understanding of excited-state behavior of the sensitizers. Since the most successful sensitizers for this application are Ru poly-pyridyl compounds, we include a brief review of their excited-state properties. More thorough reviews are available in the literature [137]. [Pg.2755]

Willig and co-workers used near-infrared spectroscopy to measure excited-state interfacial electron transfer rates after pulsed light excitation of cis-Ru(dcb)2(NCS)2-Ti02 in vacuum from 20 to 295 K [208]. They reported that excited-state electron injection occurred in less than 25 fs, prior to the redistribution of the excited-state vibrational energy, and that the classical Gerischer model for electron injection was inappropriate for this process. They concluded that the injection reaction is controlled by the electronic tunneling barrier and by the escape of the initially prepared wave packet describing the hot electron from the reaction distance of the oxidized dye molecule. It appears that some sensitizer decomposition occurred in these studies as the transient spectrum was reported to be similar to that of the thermal oxidation product of m-Ru(dcb)2(NCS)2. [Pg.2770]

The long effective pathlength and high surface area afforded by these colloidal semiconductor materials allow spectroscopic characterization of interfacial electron transfer in molecular detail that was not previously possible. It is likely that within the next decade photoinduced interfacial electron transfer will be understood in the same detail now found only in homogeneous fluid solution. In many cases the sensitization mechanisms and theory developed for planar electrodes" are not applicable to the sensitized nanocrystalline films. Therefore, new models are necessary to describe the fascinating optical and electronic behavior of these materials. One such behavior is the recent identification of ultra-fast hot injection from molecular excited states. Furthermore, with these sensitized electrodes it is possible to probe ultra-fast processes using simple steady-state photocurrent action spectrum. [Pg.2778]


See other pages where Excited interfacial electron transfer is mentioned: [Pg.344]    [Pg.13]    [Pg.30]    [Pg.8]    [Pg.12]    [Pg.16]    [Pg.72]    [Pg.525]    [Pg.51]    [Pg.52]    [Pg.53]    [Pg.202]    [Pg.287]    [Pg.80]    [Pg.80]    [Pg.184]    [Pg.93]    [Pg.360]    [Pg.1895]    [Pg.2728]    [Pg.2735]    [Pg.2743]    [Pg.2746]    [Pg.2748]    [Pg.2756]    [Pg.3584]    [Pg.3598]    [Pg.3778]    [Pg.3779]    [Pg.3780]   
See also in sourсe #XX -- [ Pg.397 ]




SEARCH



Electron excitation, transfer

Electron interfacial

Electron transfer interfacial

Electronic excitation transfer

Electronic excited

Electronical excitation

Electrons excitation

Electrons, excited

Excitation transfer

Interfacial electron transfer molecular excitations

Interfacial transfer

© 2024 chempedia.info