Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excitation energies properties

Chemical properties of deposited monolayers have been studied in various ways. The degree of ionization of a substituted coumarin film deposited on quartz was determined as a function of the pH of a solution in contact with the film, from which comparison with Gouy-Chapman theory (see Section V-2) could be made [151]. Several studies have been made of the UV-induced polymerization of monolayers (as well as of multilayers) of diacetylene amphiphiles (see Refs. 168, 169). Excitation energy transfer has been observed in a mixed monolayer of donor and acceptor molecules in stearic acid [170]. Electrical properties have been of interest, particularly the possibility that a suitably asymmetric film might be a unidirectional conductor, that is, a rectifier (see Refs. 171, 172). Optical properties of interest include the ability to make planar optical waveguides of thick LB films [173, 174]. [Pg.560]

J. B. Foresman and H. B. Schlegel, Application of the Cl-Singles Method in Predicting the Energy, Properties and Reactivity of Molecules in Their Excited Slates in Molecular Spectroscopy Recent Experimental and Computational Advances, ed. R. Fausto, NATO-ASI Series C, Kluwer Academic, The Netherlands, 1993. [Pg.235]

Linear response function approaches were introduced into the chemistry literature about thirty years ago Ref. [1,2]. At that time they were referred to as Green functions or propagator approaches. Soon after the introduction it became apparent that they offered a viable and attractive alternative to the state specific approaches for obtaining molecular properties as excitation energies, transition moments and second order molecular properties. [Pg.112]

The excitation energy and dynamic properties are evaluated from the time-averaged derivatives of the corresponding time-dependent energy functionals [11, 23-25]. However, a more straightforward way to define dynamic properties is through an expectation value of the corresponding properties over a state / ... [Pg.157]

Moreno M, Aramburu JA, Barriuso MT (2003) Electronic Properties and Bonding in Transition Metal Complexes Influence of Pressure 106 127-152 Morita M, Buddhudu S, Rau D, Murakami S (2004) Photoluminescence and Excitation Energy Transfer of Rare Earth Ions in Nanoporous Xerogel and Sol-Gel SiC>2 Glasses 107 115-143... [Pg.224]

Roewer G, Herzog U, Trommer K, Muller E, Friihauf S (2002) Silicon Carbide - A Survey of Synthetic Approaches, Properties and Applications 101 59-136 Rosa A, Ricciardi G, Gritsenko O, Baerends EJ (2004) Excitation Energies of Metal Complexes with Time-dependent Density Functional Theory 112 49-116 Rosokha SV, Kochi JK (2007) X-ray Structures and Electronic Spectra of the n-Halogen Complexes between Halogen Donors and Acceptors with jc-Receptors. 126 137-160 Rudolf P, see Golden MS (2004) 109 201-229... [Pg.225]

Stanton JF, Bartlett RJ (1993) The equation of motion coupled-cluster method - a systematic biorthogonal approach to molecular-excitation energies, transition-probabilities, and excited-state properties. J Chem Phys 98 7029... [Pg.330]

A review16 with 89 references is given on the excited state properties of the low valent (0 and + 1) bi- and trinuclear complexes of Pd and Pt. Physical characterization of the nature of the lowest energy excited states along with their photoinduced chemical reactivities toward oxidative additions is discussed. [Pg.557]


See other pages where Excitation energies properties is mentioned: [Pg.125]    [Pg.382]    [Pg.57]    [Pg.63]    [Pg.149]    [Pg.84]    [Pg.147]    [Pg.151]    [Pg.40]    [Pg.457]    [Pg.627]    [Pg.247]    [Pg.10]    [Pg.150]    [Pg.150]    [Pg.168]    [Pg.360]    [Pg.11]    [Pg.196]    [Pg.207]    [Pg.270]    [Pg.4]    [Pg.389]    [Pg.390]    [Pg.54]    [Pg.76]    [Pg.81]    [Pg.105]    [Pg.106]    [Pg.153]    [Pg.185]    [Pg.199]    [Pg.293]    [Pg.300]    [Pg.301]    [Pg.318]    [Pg.564]    [Pg.583]    [Pg.139]    [Pg.151]    [Pg.225]   
See also in sourсe #XX -- [ Pg.65 ]




SEARCH



Energy properties

Excitation energy

© 2024 chempedia.info