Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excitation, electronic materials

As described at the end of section Al.6.1. in nonlinear spectroscopy a polarization is created in the material which depends in a nonlinear way on the strength of the electric field. As we shall now see, the microscopic description of this nonlinear polarization involves multiple interactions of the material with the electric field. The multiple interactions in principle contain infomiation on both the ground electronic state and excited electronic state dynamics, and for a molecule in the presence of solvent, infomiation on the molecule-solvent interactions. Excellent general introductions to nonlinear spectroscopy may be found in [35, 36 and 37]. Raman spectroscopy, described at the end of the previous section, is also a nonlinear spectroscopy, in the sense that it involves more than one interaction of light with the material, but it is a pathological example since the second interaction is tlirough spontaneous emission and therefore not proportional to a driving field... [Pg.252]

In photoluminescence one measures physical and chemical properties of materials by using photons to induce excited electronic states in the material system and analyzing the optical emission as these states relax. Typically, light is directed onto the sample for excitation, and the emitted luminescence is collected by a lens and passed through an optical spectrometer onto a photodetector. The spectral distribution and time dependence of the emission are related to electronic transition probabilities within the sample, and can be used to provide qualitative and, sometimes, quantitative information about chemical composition, structure (bonding, disorder, interfaces, quantum wells), impurities, kinetic processes, and energy transfer. [Pg.29]

Another interesting applications area for fullerenes is based on materials that can be fabricated using fullerene-doped polymers. Polyvinylcarbazole (PVK) and other selected polymers, such as poly(paraphcnylene-vinylene) (PPV) and phenylmethylpolysilane (PMPS), doped with a mixture of Cgo and C70 have been reported to exhibit exceptionally good photoconductive properties [206, 207, 208] which may lead to the development of future polymeric photoconductive materials. Small concentrations of fullerenes (e.g., by weight) lead to charge transfer of the photo-excited electrons in the polymer to the fullerenes, thereby promoting the conduction of mobile holes in the polymer [209]. Fullerene-doped polymers also have significant potential for use in applications, such as photo-diodes, photo-voltaic devices and as photo-refractive materials. [Pg.85]

The photovoltaic effect is initiated by light absorption in the electrode material. This is practically important only with semiconductor electrodes, where the photogenerated, excited electrons or holes may, under certain conditions, react with electrolyte redox systems. The photoredox reaction at the illuminated semiconductor thus drives the complementary (dark) reaction at the counterelectrode, which again may (but need not) regenerate the reactant consumed at the photoelectrode. The regenerative mode of operation is, according to the IUPAC recommendation, denoted as photovoltaic cell and the second one as photoelectrolytic cell . Alternative classification and terms will be discussed below. [Pg.402]

In LIBS analysis, a pulsed laser is focused on the gem surface. The laser energy ablates a small amount of gem material which burns in a short-lived plasma. As the plasma cools, excited electrons decay into lower-energy orbitals, releasing energy in the form of photons in the ultraviolet-visible-infrared range. This light is collected by optic fiber, diffracted, and recorded as a spectrum, generally between 200 and 1000 nm. [Pg.293]

Other CD semiconductors have been shown to exhibit size quantization. PbSe shows the effect very clearly, since quantum size effects can be clearly seen in this material, even in crystals up to several tens of nanometers in size (due to the small effective mass of the excited electron-hole pair). Shifts of greater than 1 eV have been demonstrated, from the bulk bandgap of 0.28 eV to 1.5 eV. [Pg.89]

The occurrence of TSDC during a thermal scan of a previously excited ( perturbed ) material is probably the most direct evidence we have for the existence of electronic trap levels in the band gap of these materials. The main attraction of TSDC and related techniques as experimental methods for the study of the trapping levels in high-resistance semiconductors was their apparent simplicity. A TSDC spectrum (for historical reasons, frequently referred to as a glow curve ) usually consists of a number of more or less resolved peaks in current versus temperature dependence. The latter, in most cases, may be attributed to a species of traps. [Pg.23]

On the other hand, oxide semiconductor materials such as ZnO and 2 have good stabilities under irradiation in solution. However, such stable oxide semiconductors cannot absorb visible light because of their wide band-gap character. Sensitization of wide-band-gap oxide semiconductor materials by photosensitizers, such as organic dyes which can absorb visible light, has been extensively studied in relation to the development of photography technology since the middle of the nineteenth century. In the sensitization process, dyes adsorbed onto the semiconductor surface absorb visible light and excited electrons of dyes are injected into the conduction band of the semiconductor. Dye-sensitized oxide semiconductor photoelectrodes have been used for PECs. [Pg.123]

Semiconductor band-gap luminescence results from excited electrons recombining with electron vacancies, holes, across the band gap of the semiconductor material. Electrons can be excited across the band gap of a semiconductor by absorption of light, as in photoluminescence (PL), or injected by electrical bias, as in electroluminescence (EL). Both types of luminescence have been used in chemical sensing applications [1,3]. [Pg.346]


See other pages where Excitation, electronic materials is mentioned: [Pg.1204]    [Pg.1210]    [Pg.1946]    [Pg.2861]    [Pg.2908]    [Pg.126]    [Pg.345]    [Pg.511]    [Pg.374]    [Pg.743]    [Pg.332]    [Pg.402]    [Pg.767]    [Pg.134]    [Pg.135]    [Pg.286]    [Pg.245]    [Pg.486]    [Pg.4]    [Pg.51]    [Pg.461]    [Pg.60]    [Pg.216]    [Pg.200]    [Pg.8]    [Pg.133]    [Pg.273]    [Pg.643]    [Pg.481]    [Pg.158]    [Pg.113]    [Pg.367]    [Pg.911]    [Pg.563]    [Pg.555]    [Pg.658]    [Pg.659]    [Pg.664]    [Pg.345]    [Pg.511]    [Pg.6]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Electron material

Electronic excited

Electronic materials

Electronical excitation

Electronics materials

Electrons excitation

Electrons, excited

© 2024 chempedia.info