Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exciplex formation transfer

Upon exposure to uv light, ground-state benzophenone is excited to the ttiplet state (a diradical) which abstracts an alpha H atom from the alcohol, resulting in the formation of two separate initiating radicals. With amine H atom donors, an electron transfer may precede the H-transfer, as in ttiplet exciplex formation between benzophenone and amine (eq. 43) ... [Pg.230]

Photopolymerization reactions are widely used for printing and photoresist appHcations (55). Spectral sensitization of cationic polymerization has utilized electron transfer from heteroaromatics, ketones, or dyes to initiators like iodonium or sulfonium salts (60). However, sensitized free-radical polymerization has been the main technology of choice (55). Spectral sensitizers over the wavelength region 300—700 nm are effective. AcryUc monomer polymerization, for example, is sensitized by xanthene, thiazine, acridine, cyanine, and merocyanine dyes. The required free-radical formation via these dyes may be achieved by hydrogen atom-transfer, electron-transfer, or exciplex formation with other initiator components of the photopolymer system. [Pg.436]

Not all sensitized photochemical reactions occur by electronic energy transfer. Schenck<77,78) has proposed that many sensitized photoreactions involve a sensitizer-substrate complex. The nature of this interaction could vary from case to case. At one extreme this interaction could involve a-bond formation and at the other extreme involve loose charge transfer or exciton interaction (exciplex formation). The Schenck mechanism for a photosensitized reaction is illustrated by the following hypothetical reaction ... [Pg.152]

Besides the excited molecule can interact physically with a second molecule, i.e. undergo bimolecular processes. These are either energy transfer (1.7) or exciplex formation (1.8) depending on the relative excitation energies of the molecule to be studied and its partner. [Pg.15]

Explain the deactivation of excited states by other molecules in terms of quenching processes, excimer/exciplex formation, energy transfer and electron transfer. [Pg.87]

The exciplex emission is also affected by solvent polarity, where an increase in the solvent polarity results in a lowering of the energy level of the exciplex, at the same time allowing stabilisation of charged species formed by electron transfer (Figure 6.7). Thus, in polar solvents the exciplex emission is shifted to even higher wavelength and accompanied by a decrease in the intensity of the emission, due to competition between exciplex formation and electron transfer. [Pg.95]

This chapter describes the characteristics of the fluorescence emission of an excited molecule in solution. We do not consider here the photophysical processes involving interactions with other molecules (electron transfer, proton transfer, energy transfer, excimer or exciplex formation, etc.). These processes will be examined in Chapter 4. [Pg.34]

Class 3 fluorophores linked, via a spacer or not, to a receptor. The design of such sensors, which are based on molecule or ion recognition by a receptor, requires special care in order to fulfil the criteria of affinity and selectivity. These aspects are relevant to the field of supramolecular chemistry. The changes in photophysical properties of the fluorophore upon interaction with the bound analyte are due to the perturbation by the latter of photoinduced processes such as electron transfer, charge transfer, energy transfer, excimer or exciplex formation or disappearance, etc. These aspects are relevant to the field of photophysics. In the case of ion recognition, the receptor is called an ionophore, and the whole molecular sensor is... [Pg.274]

The effects of photophysical intermolecular processes on fluorescence emission are described in Chapter 4, which starts with an overview of the de-excitation processes leading to fluorescence quenching of excited molecules. The main excited-state processes are then presented electron transfer, excimer formation or exciplex formation, proton transfer and energy transfer. [Pg.394]

The basic principle of this method of recognition is a cation-induced conformational change bringing closer together (or moving away) two moieties able to interact and induce photophysical effects excimer or exciplex formation (or disappearance), electronic energy transfer and quenching. [Pg.37]

An example of exciplex formation in the solid state may be afforded by perylene doped crystals of pyrene which emit a green structureless fluorescence in addition to the blue and orange-red excimer bands of pyrene and perylene, respectively. Hochstrasser112 has shown that the energy of the emitting species is consistent with that of a charge transfer complex of pyrene and perylene molecules in a bimolecular unit of the pyrene lattice. [Pg.213]

Solute-solvent interactions are of two types (1) universal interaction, and (2) specific interaction. Universal interaction is due to the collective influence of the solvent as a dielectric medium. It depends on the dielectric constant D and refractive index n of the solvent and the dipole moment g of the solute molecule. Such interactions are van der Waals type. Specific interactions are short range interactions and involve H-bonding, charge-transfer or exciplex formation. H-bonding ability may change on excitation specially for n-yxt transitions. [Pg.124]

Charge Transfer Mechanism Exciplex Formation and Decay... [Pg.182]

All of the photochemical cycloaddition reactions of the stilbenes are presumed to occur via excited state ir-ir type complexes (excimers, exciplexes, or excited charge-transfer complexes). Both the ground state and excited state complexes of t-1 are more stable than expected on the basis of redox potentials and singlet energy. Exciplex formation helps overcome the entropic problems associated with a bimolecular cycloaddition process and predetermines the adduct stereochemistry. Formation of an excited state complex is a necessary, but not a sufficient condition for cycloaddition. In fact, increased exciplex stability can result in decreased quantum yields for cycloaddition, due to an increased barrier for covalent bond formation (Fig. 2). The cycloaddition reactions of t-1 proceed with complete retention of stilbene and alkene photochemistry, indicative of either a concerted or short-lived singlet biradical mechanism. The observation of acyclic adduct formation in the reactions of It with nonconjugated dienes supports the biradical mechanism. [Pg.223]

The 1,3-dioxoles and 1,4-dioxene are the only alkenes with which exciplex formation and decay can be studied in conjunction with photoaddition. The dioxoles give ortho as well as meta photocycloadducts with benzene [13,14,122], Mattay et al. [15,134,183] have pictured the exciplex as a common precursor to both types. The exciplex is supposed to possess charge-transfer character, from the dioxole to the arene. Formation of the ortho adduct is thought to proceed stepwise as shown in Scheme 36 for anisole and 1,3-dioxole... [Pg.88]


See other pages where Exciplex formation transfer is mentioned: [Pg.240]    [Pg.401]    [Pg.193]    [Pg.10]    [Pg.10]    [Pg.129]    [Pg.693]    [Pg.704]    [Pg.236]    [Pg.22]    [Pg.272]    [Pg.42]    [Pg.118]    [Pg.253]    [Pg.1228]    [Pg.553]    [Pg.210]    [Pg.7]    [Pg.1228]    [Pg.188]    [Pg.171]    [Pg.28]    [Pg.527]    [Pg.199]    [Pg.201]    [Pg.109]    [Pg.183]    [Pg.219]    [Pg.706]    [Pg.29]    [Pg.40]    [Pg.279]    [Pg.332]   
See also in sourсe #XX -- [ Pg.147 , Pg.148 , Pg.149 ]




SEARCH



Exciplex

Exciplex formation

Exciplex formation, charge transfer

Exciplex formation, charge transfer reactions

Exciplexes

Formate transfer

Singlet Quenching by Energy Transfer and Exciplex Formation

© 2024 chempedia.info