Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Examples spectroscopic properties

Two broad classes of technique are available for modeling matter at the atomic level. The first avoids the explicit solution of the Schrodinger equation by using interatomic potentials (IP), which express the energy of the system as a function of nuclear coordinates. Such methods are fast and effective within their domain of applicability and good interatomic potential functions are available for many materials. They are, however, limited as they cannot describe any properties and processes, which depend explicitly on the electronic structme of the material. In contrast, electronic structure calculations solve the Schrodinger equation at some level of approximation allowing direct simulation of, for example, spectroscopic properties and reaction mechanisms. We now present an introduction to interatomic potential-based methods (often referred to as atomistic simulations). [Pg.4529]

Much of the experimental work in chemistry deals with predicting or inferring properties of objects from measurements that are only indirectly related to the properties. For example, spectroscopic methods do not provide a measure of molecular stmcture directly, but, rather, indirecdy as a result of the effect of the relative location of atoms on the electronic environment in the molecule. That is, stmctural information is inferred from frequency shifts, band intensities, and fine stmcture. Many other types of properties are also studied by this indirect observation, eg, reactivity, elasticity, and permeabiHty, for which a priori theoretical models are unknown, imperfect, or too compHcated for practical use. Also, it is often desirable to predict a property even though that property is actually measurable. Examples are predicting the performance of a mechanical part by means of nondestmctive testing (qv) methods and predicting the biological activity of a pharmaceutical before it is synthesized. [Pg.417]

The focus is on the primary formation of bonds, not on subsequent reactions of the products to form other bonds. These latter reactions are covered at the places where the formation of those bonds is described. Reactions in which atoms merely change their oxidation states are not included, nor are reactions in which the same pairs of elements come together again in the product (for example, in metatheses or redistributions). Physical and spectroscopic properties or structural details of the products are not covered by the reaction volumes which are concerned with synthetic utility based on yield, economy of ingredients, purity of product, specificity, etc. The preparation of short-lived transient species is not described. [Pg.15]

Most spectroscopic properties are related to second derivatives of the total energy. As a simple illustrative example, vibrational modes, which arise from the harmonic oscillations of atoms around their equilibrium positions, are characterized by the quadratic variation of the total energy as a function of the atomic displacements SRy... [Pg.23]

No particular studies have been published on the IR or ultraviolet (UV) spectroscopic properties of this type of compound. No abnormal IR frequencies have been reported and, for example, classical IR frequencies for the CO bond at respectively 1700, 1709, and 1685 cm 1 have been observed for compounds 88, 89, and 90 <1997M395, 2001JFC275, 2001TL407>. [Pg.55]

Dibenzoylmethane (8b) has been the subject of much interest as regards the possibility that its polymorphism is associated with keto-enol tautomerism. Chemical and spectroscopic studies showed that this is not so (33a). This compound had previously been reported to be trimorphic (33b), but one form appears, in fact, to be a eutectic mixture of the other two. The molecules in these two polymorphs are both in the same state of tautomerism they differ in the torsional angle about the (CH)-(CO) bond and in the type of hydrogen bonding in which they participate. It is noteworthy that solutions prepared from these forms at low temperature have differences in chemical and spectroscopic properties that are maintained for some time. For example, such solutions prepared and held at —35° react at different rates with FeCl3. [Pg.140]

A correlation analysis is a powerful tool used widely in various fields of theoretical and experimental chemistry. Generally, such an analysis, based on a statistically representative mass of data, can lead to reliable relationships that allow us to predict or to estimate important characteristics of still unknown molecular systems or systems unstable for direct experimental measurements. First, this statement concerns structural, thermodynamic, kinetic, and spectroscopic properties. For example, despite the very complex nature of chemical screening in NMR, particularly for heavy nuclei, various incremental schemes accurately predict their chemical shifts, thus providing a structural analysis of new molecular systems. Relationships for the prediction of physical or chemical properties of compounds or even their physiological activity are also well known. [Pg.167]

It is therefore the right time to give a first comprehensive overview of fullerene chemistry, which is the aim of this book. This summary addresses chemists, material scientists and a broad readership in industry and the scientific community. The number of publications in this field meanwhile gains such dimensions that for nonspecialists it is very difficult to obtain a facile access to the topics of interest. In this book, which contains the complete important literature, the reader will find all aspects of fullerene chemistry as well as the properties of fullerene derivatives. After a short description of the discovery of the fullerenes all methods of the production and isolation of the parent fullerenes and endohedrals are discussed in detail (Chapter 1). In this first chapter the mechanism of the fullerene formation, the physical properties, for example the molecular structure, the thermodynamic, electronic and spectroscopic properties as well as solubilities are also summarized. This knowledge is necessary to understand the chemical behavior of the fullerenes. [Pg.435]


See other pages where Examples spectroscopic properties is mentioned: [Pg.217]    [Pg.217]    [Pg.2482]    [Pg.82]    [Pg.316]    [Pg.66]    [Pg.455]    [Pg.98]    [Pg.156]    [Pg.335]    [Pg.15]    [Pg.780]    [Pg.860]    [Pg.154]    [Pg.123]    [Pg.42]    [Pg.142]    [Pg.150]    [Pg.342]    [Pg.326]    [Pg.102]    [Pg.441]    [Pg.13]    [Pg.287]    [Pg.300]    [Pg.508]    [Pg.426]    [Pg.227]    [Pg.133]    [Pg.246]    [Pg.316]    [Pg.566]    [Pg.126]    [Pg.15]    [Pg.278]    [Pg.286]    [Pg.1]    [Pg.260]    [Pg.329]    [Pg.614]    [Pg.316]    [Pg.362]   
See also in sourсe #XX -- [ Pg.613 ]




SEARCH



Property spectroscopic

Property-example

© 2024 chempedia.info