Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Europium Element

Europium has two isotopes Eu with an atomic mass of 150.919846 (u) and Eu with an atomic mass of 152.921226 (u). The isotope Eu is stable, whereas the other was recently found to unstable, but with an extremely long half-life [Pg.62]


Europium is now prepared by mixing EU2O3 with a 10%-excess of lanthanum metal and heating the mixture in a tantalum crucible under high vacuum. The element is collected as a silvery-white metallic deposit on the walls of the crucible. [Pg.177]

Selective Reduction. In aqueous solution, europium(III) [22541 -18-0] reduction to europium(II) [16910-54-6] is carried out by treatment with amalgams or zinc, or by continuous electrolytic reduction. Photochemical reduction has also been proposed. When reduced to the divalent state, europium exhibits chemical properties similar to the alkaline-earth elements and can be selectively precipitated as a sulfate, for example. This process is highly selective and allows production of high purity europium fromlow europium content solutions (see Calcium compounds Strontiumand strontium compounds). [Pg.544]

Spectral interferences in AAS arise mainly from overlap between the frequencies of a selected resonance line with lines emitted by some other element this arises because in practice a chosen line has in fact a finite bandwidth . Since in fact the line width of an absorption line is about 0.005 nm, only a few cases of spectral overlap between the emitted lines of a hollow cathode lamp and the absorption lines of metal atoms in flames have been reported. Table 21.3 includes some typical examples of spectral interferences which have been observed.47-50 However, most of these data relate to relatively minor resonance lines and the only interferences which occur with preferred resonance lines are with copper where europium at a concentration of about 150mgL 1 would interfere, and mercury where concentrations of cobalt higher than 200 mg L 1 would cause interference. [Pg.792]

Rare earth elements, with relatively high thermal neutron activation cross-sections, have been tested or considered as tagging species for this purpose. At GA (Ref 8), preliminary expts were conducted with 0.38 cal ammo using dysprosium (Dy) and europium (Eu) deposited on the wall of the cartridge case and in the gunpowder, and Dy, hoKnium (Ho) and indium (In) in the primer. [Pg.379]

Bivalence is similarly shown for europium, and trivalence for the elements gadolinium to thulium. [Pg.354]

Light-silver-colored element generated from a plutonium isotope (241Pu) by beta decay. Never detected in nature. Chemically similar to Europium. A few tons have been produced throughout the world through regeneration of fuel rods. Americium is a good source of alpha rays. Hence it is suitable to measure thicknesses, as a detector in smoke alarms, and for the activation analysis of the tiniest amounts of substances. [Pg.156]

The compounds of the rare earth elements are usually highly colored. Neodymium s compounds are mainly lavender and violet, samarium s yellow and brown, holmium s yellow and orange, and erbium s rose-pink. Europium makes pink salts which evaporate easily. Dysprosium makes greenish yellow compounds, and ytterbium, yellow-gold. Compounds of lutetium are colorless, and compounds of terbium are colorless, dark brown, or black. [Pg.43]

Reaction between europium (III) oxide and hydrogen sulfide at 600° produces europium(III) sulfide predominately, but europium (II) sulfide is the product of reaction at higher temperatures.3 It has been found necessary to modify the previously published procedure3 in order to remove the last traces of elemental sulfur which otherwise contaminate the product. [Pg.79]

The relation between s- and r-process for a sample of Barium stars are showed, using europium as representative of r-process, since it is a nearly pure r-process element, and La and Ba as representatives of s-process. [Pg.35]

Different lanthanide metals also produce different emission spectrums and different intensities of luminescence at their emission maximums. Therefore, the relative sensitivity of time-resolved fluorescence also is dependent on the particular lanthanide element complexed in the chelate. The most popular metals along with the order of brightness for lanthanide chelate fluorescence are europium(III) > terbium(III) > samarium(III) > dysprosium(III). For instance, Huhtinen et al. (2005) found that lanthanide chelate nanoparticles used in the detection of human prostate antigen produced relative signals for detection using europium, terbium, samarium, and dysprosium of approximately 1.0 0.67 0.16 0.01, respectively. The emission... [Pg.476]

An interesting effect of the half-filled and filled 4/ shell is shown when a graph is made of the melting point of the elements. Such a graph is shown in Figure 11.6. Although it is not shown, a plot of atomic radii for the metals shows a large increase in size for Eu and Yb. For example, the radii of Sm and Gd are approximately 180 pm, but Eu, situated between them, has a radius of 204 pm. The difference in size between Yb and the atoms before and after it also amounts to about 20 pm. Europium and ytterbium... [Pg.388]

These include the following 14 elements cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmi-um, erbium, thulium, ytterbium, and lutetium. [Pg.211]

Iieser et al. [628] studied the application of neutron activation analysis to the determination of trace elements in seawater. The rare earths included in this study were cerium and europium. The element concerned were adsorbed onto charcoal. Between 75% and 100% of the elements were adsorbed onto the charcoal which was then subjected to analysis by neutron activation analysis. Cerium (300 p,g/l) and europium (0.00082 pg/1) were found in North Sea water by this method. [Pg.212]

In these procedures 1 litre of seawater was shaken with 60 mg charcoal for 15 min. Complexing agents were added in amounts of 1 mg, dissolved in 1 ml of acetone. The pH was 5.5, or it was adjusted to 8.5 by addition of 0.1 M ammonia. The charcoal was filtered off and irradiated. Results of three sets of experiments with charcoal alone, charcoal in the presence of dithizone, and charcoal in the presence of sodium diethyldithiocarbamate are compared. The following elements are adsorbed to an extent from 75 to 100% silver, gold, cerium, cadmium, cobalt, chromium, europium, iron, mercury, lanthanum, scandium, uranium, and zinc. The amount of sodium is reduced to about 10 6, bromine to about 10 5, and calcium to about 10 2. [Pg.284]

Bastnaesite belongs to the carbonatite group of minerals that contain REOEs. Beside the cerium group of elements, bastnaesite also contains yttrium and europium. Typically, it contains 65-75% REOE. Bastnaesite is usually found in pegmatites, carbonatite and hydrothermal ore bodies in alkaline gangue minerals. Because it is poor chemically and stable, it is not found in mineral sand deposits. [Pg.151]

Rare-earth elements have been largely used in these studies. Among them, europium (III) was considered owing to its unusual electronic structure. Eu3+-ion-modified TiOz samples were prepared by a chemical coprecipitation-peptization method [156], which consists of prehydrolysis of TiCl4 by frozen distilled water. The Eu203 powder was added to the above solution to produce a transparent aqueous solution according to the required Eu3+ modifying content (Eu3+ ion equivalent to 3.0 at% of Ti in bulk solution). [Pg.438]

Within the lanthanides the first ones from La to Eu are the so-called light lanthanides, the other are the heavy ones. Together with the heavy lanthanides it may be useful to consider also yttrium the atomic dimensions of this element and some general characteristics of its alloying behaviour are indeed very similar to those of typical heavy lanthanides, such as Dy or Ho. An important subdivision within the lanthanides, or more generally within the rare earth metals, is that between the divalent ones (europium and ytterbium which have been described together with other divalent metals in 5.4) and the trivalent ones (all the others, scandium and yttrium included). [Pg.357]


See other pages where Europium Element is mentioned: [Pg.62]    [Pg.50]    [Pg.62]    [Pg.50]    [Pg.235]    [Pg.444]    [Pg.539]    [Pg.547]    [Pg.95]    [Pg.24]    [Pg.147]    [Pg.412]    [Pg.16]    [Pg.286]    [Pg.1]    [Pg.1]    [Pg.197]    [Pg.19]    [Pg.152]    [Pg.133]    [Pg.144]    [Pg.55]    [Pg.43]    [Pg.206]    [Pg.501]    [Pg.388]    [Pg.353]    [Pg.337]    [Pg.100]    [Pg.125]    [Pg.8]    [Pg.444]    [Pg.244]   
See also in sourсe #XX -- [ Pg.7 , Pg.10 , Pg.31 , Pg.34 ]




SEARCH



Europium

Rare earth element europium anomaly

© 2024 chempedia.info