Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Eulerian turbulence

An Eulerian-Eulerian (EE) approach was adopted to simulate the dispersed gas-liquid flow. The EE approach treats both the primary liquid phase and the dispersed gas phase as interpenetrating continua, and solves a set of Navier-Stokes equations for each phase. Velocity inlet and outlet boundary conditions were employed in the liquid phase, whilst the gas phase conditions consisted of a velocity inlet and pressure outlet. Turbulence within the system was account for with the Standard k-e model, implemented on a per-phase basis, similar to the recent work of Bertola et. al.[4]. A more detailed description of the computational setup of the EE method can be found in Pareek et. al.[5]. [Pg.670]

For simulating computationally the spatial and temporal evolution of both physical and chemical processes in mixing devices operated in a turbulent singlephase mode, two essentially different approaches are available the Lagrangian approach and the Eulerian technique. These will be explained briefly. [Pg.165]

An alternative approach (e.g., Patterson, 1985 Ranade, 2002) is the Eulerian type of simulation that makes use of a CDR equation—see Eq. (13)—for each of the chemical species involved. While resolution of the turbulent flow down to the Kolmogorov length scale already is far beyond computational capabilities, one certainly has to revert to modeling the species transport in liquid systems in which the Batchelor length scale is smaller than the Kolmogorov length scale by at least one order of magnitude see Eq. (14). Hence, both in RANS simulations and in LES, species concentrations and temperature still fluctuate within a computational cell. Consequently, the description of chemical reactions and the transport of heat and species in a chemical reactor ask for subtle approaches as to the SGS fluctuations. [Pg.213]

Aerosol production and transport over the oceans are of interest in studies concerning cloud physics, air pollution, atmospheric optics, and air-sea interactions. However, the contribution of sea spray droplets to the transfer of moisture and latent heat from the sea to the atmosphere is not well known. In an effort to investigate these phenomena, Edson et al.[12l used an interactive Eulerian-Lagrangian approach to simulate the generation, turbulent transport and evaporation of droplets. The k-e turbulence closure model was incorporated in the Eulerian-Lagrangian model to accurately simulate... [Pg.344]

For canonical turbulent flows (Pope 2000), the flow parameters required to complete the CRE models are readily available. However, for the complex flow fields present in most chemical reactors, the flow parameters must be found either empirically or by solving a CFD turbulence model. If the latter course is taken, the next logical step would be to attempt to reformulate the CRE model in terms of a set of transport equations that can be added to the CFD model. The principal complication encountered when following this path is the fact that the CRE models are expressed in a Lagrangian framework, whilst the CFD models are expressed in an Eulerian framework. One of the main goals of this book... [Pg.23]

Note that the turbulent diffusivity Tt(x, t) must be provided by a turbulence model, and for inhomogeneous flows its spatial gradient appears in the drift term in (6.177). If this term is neglected, the notional-particle location PDF, fx>, will not remain uniform when VTt / 0, in which case the Eulerian PDFs will not agree, i.e., i=- f0. [Pg.313]

The time step A t used in the Eulerian PDF simulation13 can be at most equal to the smallest cell time step. Likewise, a characteristic turbulence time step can be computed for each cell ... [Pg.353]

For simple flows where the mean velocity and/or turbulent diffusivity depend only weakly on the spatial location, the Eulerian PDF algorithm described above will perform adequately. However, in many flows of practical interest, there will be strong spatial gradients in turbulence statistics. In order to resolve such gradients, it will be necessary to use local grid refinement. This will result in widely varying values for the cell time scales found from (7.13). The simulation time step found from (7.15) will then be much smaller than the characteristic cell time scales for many of the cells. When the simulation time step is applied in (7.16), one will find that Ni must be made unrealistically large in order to satisfy the constraint that Nf > 1 for all k. [Pg.356]

Comparison of Eulerian and Lagrangian Monte Carlo PDF methods for turbulent diffusion flames. Combustion and Flame 124, 519-534. [Pg.419]

The Eulerian approach to turbulent diffusion was shown to lead to the atmospheric diffusion equation (2.19) ... [Pg.222]

The mathematical models used to infer rates of water motion from the conservative properties and biogeochemical rates from nonconservative ones were flrst developed in the 1960s. Although they require acceptance of several assumptions, these models represent an elegant approach to obtaining rate information from easily measured constituents in seawater, such as salinity and the concentrations of the nonconservative chemical of interest. These models use an Eulerian approach. That is, they look at how a conservative property, such as the concentration of a conservative solute C, varies over time in an infinitesimally small volume of the ocean. Since C is conservative, its concentrations can only be altered by water transport, either via advection and/or turbulent mixing. Both processes can move water through any or all of the three dimensions... [Pg.95]

A variety of statistical models are available for predictions of multiphase turbulent flows [85]. A large number of the application oriented investigations are based on the Eulerian description utilizing turbulence closures for both the dispersed and the carrier phases. The closure schemes for the carrier phase are mostly limited to Boussinesq type approximations in conjunction with modified forms of the conventional k-e model [87]. The models for the dispersed phase are typically via the Hinze-Tchen algebraic relation [88] which relates the eddy viscosity of the dispersed phase to that of the carrier phase. While the simplicity of this model has promoted its use, its nonuniversality has been widely recognized [88]. [Pg.148]

Krishna R, Urseanu MI, van Baten JM, Ellenberger J. Influence of scale on the hydrodynamics of bubble columns operating in the chum-turbulent regime experiments vs. Eulerian simulations. Chem Eng Sci 1999 54 4903 -911. [Pg.370]

The Eulerian continuum approach is basically an extension of the mathematical formulation of the fluid dynamics for a single phase to a multiphase. However, since neither the fluid phase nor the particle phase is actually continuous throughout the system at any moment, ways to construct a continuum of each phase have to be established. The transport properties of each pseudocontinuous phase, or the turbulence models of each phase in the case of turbulent gas-solid flows, need to be determined. In addition, the phase interactions must be expressed in continuous forms. [Pg.164]

In actual applications, the gas flow in a gravity settler is often nonuniform and turbulent the particles are polydispersed and the flow is beyond the Stokes regime. In this case, the particle settling behavior and hence the collection efficiency can be described by using the basic equations introduced in Chapter 5, which need to be solved numerically. One common approach is to use the Eulerian method to represent the gas flow and the Lagrangian method to characterize the particle trajectories. The random variations in the gas velocity due to turbulent fluctuations and the initial entering locations and sizes of the particles can be accounted for by using the Monte Carlo simulation. Examples of this approach were provided by Theodore and Buonicore (1976). [Pg.323]


See other pages where Eulerian turbulence is mentioned: [Pg.417]    [Pg.245]    [Pg.1175]    [Pg.476]    [Pg.226]    [Pg.908]    [Pg.417]    [Pg.245]    [Pg.1175]    [Pg.476]    [Pg.226]    [Pg.908]    [Pg.300]    [Pg.328]    [Pg.139]    [Pg.140]    [Pg.140]    [Pg.141]    [Pg.341]    [Pg.344]    [Pg.16]    [Pg.82]    [Pg.311]    [Pg.348]    [Pg.348]    [Pg.350]    [Pg.358]    [Pg.214]    [Pg.218]    [Pg.86]    [Pg.177]    [Pg.206]    [Pg.206]    [Pg.285]    [Pg.328]    [Pg.142]    [Pg.145]    [Pg.150]   
See also in sourсe #XX -- [ Pg.417 ]




SEARCH



Eulerian

Eulerian approach, turbulent diffusion

Turbulence Eulerian approach

© 2024 chempedia.info