Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene, arylation

Ethylene-aryl intramolecular interaction in the excited state leading to cycliza-tion products is known for a number of diverse systems.10 The formation of benzocyclobutenes from styrenes is the simplest reaction of this type and it has recently been observed in the irradiation of polyfluorinated styrenes (112)157... [Pg.381]

Poly(aryl ether), unfilled 30% glass-fiber reinforced Poly(butylene terephthalate) Poly(ethylene terephthalate) ... [Pg.1045]

PMMA is not affected by most inorganic solutions, mineral oils, animal oils, low concentrations of alcohols paraffins, olefins, amines, alkyl monohahdes and ahphatic hydrocarbons and higher esters, ie, >10 carbon atoms. However, PMMA is attacked by lower esters, eg, ethyl acetate, isopropyl acetate aromatic hydrocarbons, eg, benzene, toluene, xylene phenols, eg, cresol, carboHc acid aryl hahdes, eg, chlorobenzene, bromobenzene ahphatic acids, eg, butyric acid, acetic acid alkyl polyhaHdes, eg, ethylene dichloride, methylene chloride high concentrations of alcohols, eg, methanol, ethanol 2-propanol and high concentrations of alkahes and oxidizing agents. [Pg.262]

Organoaluminum Compounds. Apphcation of aluminum compounds in organic chemistry came of age in the 1950s when the direct synthesis of trialkylalurninum compounds, particularly triethylalurninum and triisobutylalurninum from metallic aluminum, hydrogen, and the olefins ethylene and isobutylene, made available economic organoalurninum raw materials for a wide variety of chemical reactions (see a-BONDED alkyls and aryls). [Pg.137]

Sulfation by sulfamic acid has been used ia the preparation of detergents from dodecyl, oleyl, and other higher alcohols. It is also used ia sulfating phenols and phenol—ethylene oxide condensation products. Secondary alcohols react ia the presence of an amide catalyst, eg, acetamide or urea (24). Pyridine has also been used. Tertiary alcohols do not react. Reactions with phenols yield phenyl ammonium sulfates. These reactions iaclude those of naphthols, cresol, anisole, anethole, pyrocatechol, and hydroquinone. Ammonium aryl sulfates are formed as iatermediates and sulfonates are formed by subsequent rearrangement (25,26). [Pg.62]

Hydrolysis of dialkyl sulfites under acidic and alkaline conditions, which is followed by the use of OH2, proceeds by attack at sulfur to give S—O cleavage (72). The rate of hydrolysis is generally faster for cycHc and aryl sulfites than for dialkyl sulfites (73). Activation parameters of hydrolysis are known for some sulfites, and the increased rate for ethylene sulfite results from a reduced entropy of activation which results from a rigid ring stmcture (74). [Pg.200]

Boron Bromide. Approximately 30% of BBr produced in the United States is consumed in the manufacture of proprietory pharmaceuticals (qv) (7). BBr is used in the manufacture of isotopicaHy enriched crystalline boron, as a Etiedel-Crafts catalyst in various polymerization, alkylation, and acylation reactions, and in semiconductor doping and etching. Examples of use of BBr as a catalyst include copolymerization of butadiene with olefins (112) polymerization of ethylene and propylene (113), and A/-vinylcarbazole (114) in hydroboration reactions and in tritium labeling of steroids and aryl rings (5). [Pg.224]

Cesium forms simple alkyl and aryl compounds that are similar to those of the other alkah metals (6). They are colorless, sohd, amorphous, nonvolatile, and insoluble, except by decomposition, in most solvents except diethylzinc. As a result of exceptional reactivity, cesium aryls should be effective in alkylations wherever other alkaline alkyls or Grignard reagents have failed (see Grignard reactions). Cesium reacts with hydrocarbons in which the activity of a C—H link is increased by attachment to the carbon atom of doubly linked or aromatic radicals. A brown, sohd addition product is formed when cesium reacts with ethylene, and a very reactive dark red powder, triphenylmethylcesium [76-83-5] (C H )2CCs, is formed by the reaction of cesium amalgam and a solution of triphenylmethyl chloride in anhydrous ether. [Pg.375]

Dehalogenation of monochlorotoluenes can be readily effected with hydrogen and noble metal catalysts (34). Conversion of -chlorotoluene to Ncyanotoluene is accompHshed by reaction with tetraethyl ammonium cyanide and zero-valent Group (VIII) metal complexes, such as those of nickel or palladium (35). The reaction proceeds by initial oxidative addition of the aryl haHde to the zerovalent metal complex, followed by attack of cyanide ion on the metal and reductive elimination of the aryl cyanide. Methylstyrene is prepared from -chlorotoluene by a vinylation reaction using ethylene as the reagent and a catalyst derived from zinc, a triarylphosphine, and a nickel salt (36). [Pg.53]

With Phenols. The 2-hydroxylethyl aryl ethers are prepared from the reaction of ethylene oxide with phenols at elevated temperatures and pressures (78,79). 2-Phenoxyethyl alcohol is a perfume fixative. The water-soluble alkylphenol ethers of the higher poly(ethylene glycol)s are important surface-active agents. They are made by adding ethylene oxide to the alkylphenol at ca 200°C and 200—250 kPa (>2 atm), using sodium acetate or... [Pg.453]

A large number of pyridazines are synthetically available from [44-2] cycloaddition reactions. In one general method, azo or diazo compounds are used as dienophiles, and a second approach is based on the reaction between 1,2,4,5-tetrazines and various unsaturated compounds. The most useful azo dienophile is a dialkyl azodicarboxylate which reacts with appropriate dienes to give reduced pyridazines and cinnolines (Scheme 89). With highly substituted dienes the normal cycloaddition reaction is prevented, and, if the ethylenic group in styrenes is substituted with aryl groups, indoles are formed preferentially. The cycloadduct with 2,3-pentadienal acetal is a tetrahydropyridazine derivative which has been used for the preparation of 2,5-diamino-2,5-dideoxyribose (80LA1307). [Pg.48]

The above cycloaddition process consists of two separate [3-1-2] cycloaddition steps and represents a 1,3-2,4 addition of a multiple bond system to a hetero-1,3-diene [7S7]. The structure ot the azomethine imine intermediate has been proved unequivocally by X-ray analysis [195] Ethylene [194], acetylene [/iS2] . many alkyl- and aryl- as well sgemmal dialkyl- and diaryl-substituted alkenes [196,197, 198, 199], dienes [200], and alkynes [182, 201], certain cyclic alkenes [198, 199,... [Pg.865]

Contains Halogen.—Halogen compounds may be n/ly/em aryl or add haUdc tQ ha/oyru aethylene bromide, btomoben/ene, benzoyl cbloiide, oi rhloio-benzoic acid). [Pg.341]

Cyclization of A -aryl-2-(ethoxycarbonyl)-3-(2-pyridylamino)acrylamides 307 in AcOH, and in PPA, or in ethylene glycol afforded A-aryl-4-oxo-4//-pyrido[l,2-n]pyrimidine-3-carboxylic amide 308 (94KGS629, 95KFZ(5)39). [Pg.235]

The Pauson-Khand reaction was originally developed using strained cyclic alkenes, and gives good yields with such substrates. Alkenes with sterically demanding substituents and acyclic as well as unstrained cyclic alkenes often are less suitable substrates. An exception to this is ethylene, which reacts well. Acetylene as well as simple terminal alkynes and aryl acetylenes can be used as triple-bond component. [Pg.224]

In ethylene poljmerizations by Ni(II)-based a-diimine catalysts, the aryl groups are roughly perpendicular to the coordination plane so the bulky substituaits on the aryls are positioned at the axial directions to retard associative chain transfer ructions [6,7]. At elevated temperatures, the aryl groups may freely rotate away firm the perpoidicular orientation, resulting in increased associative chain transfes and a resulting decrease in MW of the PE. In addition such free rotation makes the sfructote of the cationic active species more unstable, resulting in fast decrease of activity. [Pg.859]


See other pages where Ethylene, arylation is mentioned: [Pg.643]    [Pg.643]    [Pg.194]    [Pg.81]    [Pg.379]    [Pg.185]    [Pg.261]    [Pg.643]    [Pg.643]    [Pg.194]    [Pg.81]    [Pg.379]    [Pg.185]    [Pg.261]    [Pg.129]    [Pg.1138]    [Pg.135]    [Pg.240]    [Pg.529]    [Pg.203]    [Pg.130]    [Pg.169]    [Pg.240]    [Pg.623]    [Pg.238]    [Pg.529]    [Pg.136]    [Pg.248]    [Pg.106]    [Pg.614]    [Pg.791]    [Pg.1018]    [Pg.96]    [Pg.130]    [Pg.207]    [Pg.857]    [Pg.875]    [Pg.876]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



© 2024 chempedia.info