Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethene 2+4 -cycloadditions

Charges and atomic distances in MP2/6-31G transition state stmcture for ketene + ethene cycloaddition... [Pg.650]

The prototypical ethene -i- ethene cycloaddition has been explored computationally and a somewhat different picture has emerged. The Cl for ethene dimerization is calculated to be rhomboid. ... [Pg.1109]

The irradiation of benzene solutions of CA in the presence of the 1,1-diarylethenes 46 yields the [27H-27i]-cyclobutane adducts 47 and the substituted quinones 48, both of which undergo further photochemistry to give the products 49 and 50 of intramolecular arene-ethene cycloaddition and 6Jt-elec-trocychzation, respectively (Figure 87.10). It is proposed that products 48 arise from a single electron-transfer process from the donor ethene to the Tj chloranil, and that the formation of the cyclobutane adducts are formed from the 1,4-biradicals without the involvement of an electron-transfer process. This conclusion is supported by the observation that the ratio of 47 48 increases with an increase in both the oxidation potential of the diarylethenes and in the positive AG value for electron transfer between the addends furthermore, the formation of 48 is greatly favored by an increase in solvent polarity. [Pg.1751]

In certain cases, multiple frontier orbital interactions must be considered. This is particularly true of cycloaddition reactions, such as the Diels-Alder reaction between 1,3-butadiene and ethene. [Pg.21]

As it happens, the frontier orbital interactions in the Diels-Alder cycloaddition shown above are like those found in the middle drawing, i.e., the upper and lower interactions reinforce and the reaction proceeds. The cycloaddition of two ethene molecules (shown below), however, involves a frontier orbital interaction like the one on the right, so this reaction does not occur. [Pg.22]

An alternative synthesis of 9//-tribenz.[/ >,ia, /]azepine (65, R = H) involves cycloaddition of 10,1 l-dehydro-5i/-dibenz[/t,/]azepine (66), generated from 5-acetyl-10-bromo-5//-dibcnz[/ ,/]azepine, with cyclohexa-1,3-diene.8 The cycloadduct 67, so-formed, with potassium rm-butoxide in refluxing bis(2-methoxyethyl) ether (diglyme) undergoes hydrolysis and loss of ethene to give the tribenzazepine in 39% yield. [Pg.238]

Other examples of [2C+2S+1C0] cycloaddition reactions have been described by Herndon et al. by the use of chromium cyclopropyl(methoxy)carbenes. These complexes react with alkynes releasing ethene and forming cyclopenta-dienone derivatives, which evolve to cyclopentenone derivatives in the presence of chromium(O) and water [122] (Scheme 76). This reaction has been extended to intramolecular processes and also to the synthesis of some natural products [123]. These authors have also described another process involving a formal [2C+2S+1C0] cycloaddition reaction. Thus, the reaction of methyl and cyclo-propylcarbene complexes with phenylacetylene derivatives does not afford the expected benzannulated products, and several regioisomers of cyclopentenone derivatives are the only products isolated [124] (Scheme 76). [Pg.110]

Most Diels-Alder reactions, particularly the thermal ones and those involving apolar dienes and dienophiles, are described by a concerted mechanism [17]. The reaction between 1,3-butadiene and ethene is a prototype of concerted synchronous reactions that have been investigated both experimentally and theoretically [18]. A concerted unsymmetrical transition state has been invoked to justify the stereochemistry of AICI3-catalyzed cycloadditions of alkylcyclohexenones with methyl-butadienes [12]. The high syn stereospecificity of the reaction, the low solvent effect on the reaction rate, and the large negative values of both activation entropy and activation volume comprise the chemical evidence usually given in favor of a pericyclic Diels-Alder reaction. [Pg.5]

An intramolecular cycloaddition reaction of the ethene sulfonate (57) occurs at high pressure and leads predominantly to the cis fused sultone (58). The minor product is the trans fused diasteieoisomer <96JCS(P1)2297>. [Pg.311]

Jug and co-workers investigated the mechanism of cycloaddition reactions of indolizines to give substituted cycl[3,2,2]azines <1998JPO201>. Intermediates in this reaction are not isolated, giving evidence for a concerted [8+2] cycloaddition, which was consistent with results of previous theoretical calculations <1984CHEC(4)443>. Calculations were performed for a number of substituted ethenes <1998JPO201>. For methyl acrylate, acrylonitrile, and ethene, the concerted [8+2] mechanism seems favored. However, from both ab initio and semi-empirical calculations of transition states they concluded that reaction with nitroethene proceeded via a two-step intermolecular electrophilic addition/cyclization route, and dimethylaminoethene via an unprecedented two-step nucleophilic addition/cyclization mechanism (Equation 1). [Pg.713]

In the intermolecular series, Diels-Alder cycloaddition of ethene to the pyrazi-none heterodiene led to the expected bicyclic cycloadduct (Scheme 6.95 b) [195], The details of this transformation, performed in pre-pressurized reaction vessels, are described in Section 4.3.2 [196], Similar cycloaddition reactions have also been studied on a solid phase (Scheme 7.58) [197]. [Pg.173]

Heterocycles Both non-aromatic unsaturated heterocycles and heteroaromatic compounds are able to play the role of ethene dipolarophiles in reactions with nitrile oxides. 1,3-Dipolar cycloadditions of various unsaturated oxygen heterocycles are well documented. Thus, 2-furonitrile oxide and its 5-substituted derivatives give isoxazoline adducts, for example, 90, with 2,3- and 2,5-dihydro-furan, 2,3-dihydropyran, l,3-dioxep-5-ene, its 2-methyl- and 2-phenyl-substituted derivatives, 5,6-bis(methoxycarbonyl)-7-oxabicyclo[2.2.1]hept-2-ene, and 1,4-epoxy-l,4-dihydronaphthalene. Regio- and endo-exo stereoselectivities have also been determined (259). [Pg.37]

The organotitanium compounds produced by desulfurization of the diphenyl thioacetals of aldehydes 28 with the titanocene(II) species Cp2Ti[P(OEt)3]2 29 react with carbon—carbon double bonds to form the olefin metathesis-type products. Thioacetals 28 may be transformed into terminal olefins by desulfurization with 29 under an ethene atmosphere (Scheme 14.15) [27]. This reaction is believed to proceed through a titanacyclobutane intermediate, formed by cycloaddition of the titanocene-alkylidene with ethene. [Pg.480]

The well-known Diels-Alder reaction [95,104-106] is a standard method for forming substituted cyclohexenes through the thermally allowed 4s + 2s cycloaddition of alkenes and dienes. In particular, the reaction between ethene and 1,3-butadiene to yield cyclohexene is the prototype of a Diels-Alder reaction (Scheme 28.4). It is now well recognized that this reaction takes place via a synchronous and concerted mechanism through an aromatic boatlike TS [105]. [Pg.427]

The details of symmetry forbidden reaction will be clear when we study the cycloaddition of ethene described later. [Pg.34]

To apply the rule we first draw the orbital picture of the reactants and show a geometrically feasible way to achieve overlap. Then the (4q + 2) suprafacial electrons and 4r antarafacial electrons of the components is counted. If the total is an odd number, the reaction is thermally allowed. Let us take the hypothetical cycloaddition of ethene to give cyclobutane. [Pg.34]

Several quantitative descriptions of [4 + 2] cycloadditions have been reported applying equation 15 or derived equations. HOMO and LUMO energies can be calculated from ionization potentials or electron affinities. Orbital coefficients have been calculated for simple ethenes and dienes using various quantum mechanical methods, e.g. INDO, CNDO/2, AMI and STO-3G. These different methods may, however, lead to substantially different results54-56. [Pg.340]

The first steps involve coordination and cycloaddition to the metal. Insertion of a third molecule of ethene leads to a more instable intermediate, a seven-membered ring, that eliminates the product, 1-hexene. This last reaction can be a (3-hydrogen elimination giving chromium hydride and alkene, followed by a reductive elimination. Alternatively, one alkyl anion can abstract a (3-hydrogen from the other alkyl-chromium bond, giving 1-hexene in one step. We prefer the latter pathway as this offers no possibilities to initiate a classic chain growth mechanism, as was also proposed for titanium [8]. The byproduct observed is a mixture of decenes ( ) and not octenes. The latter would be expected if one more molecule of ethene would insert into the metallocycloheptane intermediate. Decene is formed via insertion of the product hexene into the metallo-cyclopentane intermediate followed by elimination. [Pg.185]

A study of the regioselectivity of the 1,3-dipolar cycloaddition of aliphatic nitrile oxides with cinnamic acid esters has been published. AMI MO studies on the gas-phase 1,3-dipolar cycloaddition of 1,2,4-triazepine and formonitrile oxide show that the mechanism leading to the most stable adduct is concerted. An ab initio study of the regiochemistry of 1,3-dipolar cycloadditions of diazomethane and formonitrile oxide with ethene, propene, and methyl vinyl ether has been presented. The 1,3-dipolar cycloaddition of mesitonitrile oxide with 4,7-phenanthroline yields both mono-and bis-adducts. Alkynyl(phenyl)iodonium triflates undergo 2 - - 3-cycloaddition with ethyl diazoacetate, Ai-f-butyl-a-phenyl nitrone and f-butyl nitrile oxide to produce substituted pyrroles, dihydroisoxazoles, and isoxazoles respectively." 2/3-Vinyl-franwoctahydro-l,3-benzoxazine (43) undergoes 1,3-dipolar cycloaddition with nitrile oxides with high diastereoselectivity (90% de) (Scheme IS)." " ... [Pg.460]

The combination of modem valence bond theory, in its spin-coupled (SC) form, and intrinsic reaction coordinate calculations utilizing a complete-active-space self-consistent field (CASSCF) wavefunction, is demonstrated to provide quantitative and yet very easy-to-visualize models for the electronic mechanisms of three gas-phase six-electron pericyclic reactions, namely the Diels-Alder reaction between butadiene and ethene, the 1,3-dipolar cycloaddition of fulminic acid to ethyne, and the disrotatory electrocyclic ringopening of cyclohexadiene. [Pg.327]

The SC descriptions of the electronic mechanisms of the three six-electron pericyclic gas-phase reactions discussed in this paper (namely, the Diels-Alder reaction between butadiene and ethene [11], the 1,3-dipolar cycloaddition offulminic acid to ethyne [12], and the disrotatory electrocyclic ring-opening of cyclohexadiene) take the theory much beyond the HMO and RHF levels employed in the formulation of the most popular MO-based treatments of pericyclic reactions, including the Woodward-Hoffmarm mles [1,2], Fukui s frontier orbital theory [3] and the Dewar-Zimmerman model [4—6]. The SC wavefunction maintains near-CASSCF quality throughout the range of reaction coordinate studied for each reaction but, in contrast to its CASSCF counterpart, it is very much easier to interpret and to visualize directly. [Pg.342]


See other pages where Ethene 2+4 -cycloadditions is mentioned: [Pg.611]    [Pg.70]    [Pg.12]    [Pg.282]    [Pg.282]    [Pg.283]    [Pg.1077]    [Pg.351]    [Pg.128]    [Pg.410]    [Pg.64]    [Pg.65]    [Pg.561]    [Pg.566]    [Pg.469]    [Pg.32]    [Pg.39]    [Pg.456]    [Pg.360]    [Pg.351]    [Pg.544]    [Pg.330]    [Pg.337]    [Pg.342]    [Pg.330]   
See also in sourсe #XX -- [ Pg.486 ]




SEARCH



© 2024 chempedia.info