Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensation, acyloin ester

The thermal ring opening of l,2-bis(trimethylsiIoxy) cyclobutenes (from acyloin condensation of 1,2-dicarboxylic esters) was used in ring expansion prodecures (see p. 53f.). [Pg.80]

Diethyl succinate was obtained by the submitters from Eastman Organic Chemicals and used without purification. The checkers obtained the ester from British Drug Houses, Ltd., and distilled it at 100° (11 mm.). In general, it is preferable to distill or crystallize and dry all esters before attempting acyloin condensations. [Pg.3]

Guareschi imides are useful synthetic intermediates. They are formed from a ketone reacting with two equivalents of the cyanoacetic esters and ammonia. This transformation is illustrated in the formation of 4,4-dimethylcyclopentenone 30.The synthesis was initiated with the Guareschi reaction of 3-pentanone 27 with 28 to generate imide 29. This product was hydrolyzed to the diacid and esterified. Cyclization of the diester via acyloin condensation followed by hydrolysis and dehydration afforded the desired target 30. [Pg.308]

Upon heating of a carboxylic ester 1 with sodium in an inert solvent, a condensation reaction can take place to yield a a-hydroxy ketone 2 after hydrolytic workup. " This reaction is called Acyloin condensation, named after the products thus obtained. It works well with alkanoic acid esters. For the synthesis of the corresponding products with aryl substituents (R = aryl), the Benzoin condensation of aromatic aldehydes is usually applied. [Pg.1]

In this section primarily reductions of aldehydes, ketones, and esters with sodium, lithium, and potassium in the presence of TCS 14 are discussed closely related reductions with metals such as Zn, Mg, Mn, Sm, Ti, etc., in the presence of TCS 14 are described in Section 13.2. Treatment of ethyl isobutyrate with sodium in the presence of TCS 14 in toluene affords the O-silylated Riihlmann-acyloin-condensation product 1915, which can be readily desilylated to the free acyloin 1916 [119]. Further reactions of methyl or ethyl 1,2- or 1,4-dicarboxylates are discussed elsewhere [120-122]. The same reaction with trimethylsilyl isobutyrate affords the C,0-silylated alcohol 1917, in 72% yield, which is desilylated to 1918 [123] (Scheme 12.34). Likewise, reduction of the diesters 1919 affords the cyclized O-silylated acyloin products 1920 in high yields, which give on saponification the acyloins 1921 [119]. Whereas electroreduction on a Mg-electrode in the presence of MesSiCl 14 converts esters such as ethyl cyclohexane-carboxylate via 1922 and subsequent saponification into acyloins such as 1923 [124], electroreduction of esters such as ethyl cyclohexylcarboxylate using a Mg-electrode without Me3SiCl 14 yields 1,2-ketones such as 1924 [125] (Scheme 12.34). [Pg.281]

Another important reductive coupling is the conversion of esters to a-hydroxyketones (acyloin condensation).267 This reaction is usually carried out with sodium metal in an inert solvent. Good results have also been obtained for sodium metal dispersed on solid supports.268 Diesters undergo intramolecular reactions and this is also an important method for the preparation of medium and large carbocyclic rings. [Pg.450]

Big ring ketones (cf. the acyloin condensation, p.218) may be obtained also by working at high dilution, i.e. the carbanion carbon atom then has a greater chance of reacting with the ester carbonyl carbon atom at the other end of its own chain than with one that is attached to a different molecule (intermolecular reaction). [Pg.231]

We have seen similar radical anions generated from ketones in pinacol reduction with sodium or magnesium (p. 218), and also from esters with sodium in the acyloin condensation (p.218). [Pg.307]

Biradicals have also been encountered as intermediates in the Mg reduction of ketones to pinacols (p. 218) and, as radical anions, in the acyloin condensation of esters (p. 218). The thermolysis of cyclopropane (131) to propene (132) at 500° is also believed to involve... [Pg.337]

The reason why the acyloin synthesis is especially characteristic of aromatic aldehydes, depends on the circumstance that in the aromatic series the tertiary carbon atom in the ring does not allow of the aldol condensation, a reaction for which conditions are otherwise much more favourable. The simplest example of the acyloin condensation, moreover, was already encountered in the case of formaldehyde (p. 218) glycollic aldehyde is the simplest acyloin. Acyloin compounds are also produced, in the aliphatic series, by the action of sodium or potassium on esters, and hence are also formed as by-products in the acetoacetic ester synthesis (Bouveault, Scheibler). [Pg.223]

A relatively recent application to natural product synthesis stems from efforts to synthesize a sesquiterpene called 1-sterpurene 7 [17]. This substance is thought to be the causative agent of the so-called silver leaf disease that affects certain species of shrubs and trees. The strategy focuses on three key steps (a) electrochemical cyclization of the bis unsaturated ester 11 to produce the five-membered ring of 10, (b) a Ruhlman-modified acyloin condensation to... [Pg.4]

Probably the most familiar radical reactions leading to 1,2-D systems are the so called acyloin condensation and the different variants of the "pinacol condensation". Both types of condensation involve an electron-transfer from a metal atom to a carbonyl compound (whether an ester or an aldehyde or a ketone) to give a radical anion which either dimerises directly, if the concentration of the species is very high, or more generally it reacts with the starting neutral carbonyl compound and then a second electron is transferred from the metal to the radical dimer species (for an alternative mechanism of the acyloin condensation, see Bloomfield, 1975 [29]). [Pg.144]

Alkyl alkanoates are reduced only at very negative potentials so that preparative scale experiments at mercury or lead cathodes are not successful. Phenyl alkanoates afford 30-36% yields of the alkan-l-ol under acid conditions [148]. Preparative scale reduction of methyl alkanoates is best achieved at a magnesium cathode in tetrahydrofuran containing tm-butanol as proton donor. The reaction is carried out in an undivided cell with a sacrificial magnesium anode and affords the alkan-l-ol in good yields [151]. In the absence of a proton donor and in the presence of chlorotrimethylsilane, acyloin derivatives 30 arc formed in a process related to the acyloin condensation of esters using sodium in xylene [152], Radical-anions formed initially can be trapped by intramolecular addition to an alkene function in substrates such as 31 to give aiicyclic products [151]. [Pg.354]

The acyloin condensation is closely related to the radical anion coupling forming pinacolate anions two ester radical anions couple to form a dianion, which readily loses two alkoxide ions. The resulting diketone then is reduced by sodium, first to a semidione radical anion, then to the dianion. Finally, aqueous work-up produces the acyloin. Acyloins are convenient precursors for the generation of semidione radical anions. ... [Pg.260]

The acyloin condensation was used in an ingenious manner to prepare the first reported catenane (see p. 91).727 The catenane (39) was prepared by a statistical synthesis (p. 91) in the following manner An acyloin condensation was performed on the diethyl ester of the C34 dicarboxylic acid (tetratriacontandioic acid) to give the cyclic acyloin 37. This was reduced by a Clemmensen reduction with DCI in D20 instead of HC1 in H20, thus producing a C34 cycloalkane containing deuterium (38) 728... [Pg.1230]

Carboxylic esters react with sodium metal to give a-hydroxy ketones (often referred to as acyloins). The reaction, known as the acyloin condensation, is thought to proceed by the mechanism shown in Figure Si3.13. [Pg.64]

Fig. 17.59. Reduction of a carboxylic ester with dissolving sodium. Branching of the reduction paths in the presence (Bouveault-Blanc reduction) and absence (acyloin condensation) of protons. Fig. 17.59. Reduction of a carboxylic ester with dissolving sodium. Branching of the reduction paths in the presence (Bouveault-Blanc reduction) and absence (acyloin condensation) of protons.

See other pages where Condensation, acyloin ester is mentioned: [Pg.529]    [Pg.529]    [Pg.15]    [Pg.240]    [Pg.1562]    [Pg.1674]    [Pg.147]    [Pg.9]    [Pg.211]    [Pg.586]    [Pg.1228]   
See also in sourсe #XX -- [ Pg.1562 ]

See also in sourсe #XX -- [ Pg.218 ]

See also in sourсe #XX -- [ Pg.218 ]

See also in sourсe #XX -- [ Pg.151 , Pg.152 , Pg.197 ]

See also in sourсe #XX -- [ Pg.145 ]




SEARCH



Acyloin

Acyloin condensation

Acyloin condensation of esters

Acyloins

Carboxylic esters acyloin condensation

Condensation, acyloin ester aldol reaction

Condensation, acyloin ester benzoin

Condensations acyloin condensation

© 2024 chempedia.info