Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters, acid/base hydrolysis

The rates of hydrolysis of chelated ester species are independent of pH in the range 0-4.137,139 140 This result is expected as coordination to Co111 prevents protonation of the carbonyl oxygen and consequent acid hydrolysis. Base hydrolysis of the chelated isopropylglycine in [Co(en)2-(GlyOPr )]3+(fcoH = 1-5 x 106 M 1 s 1 at 25 °C) is about 106-fold faster than hydrolysis of the free unprotonated ester.140 The rate enhancement is entirely due to a more positive AS in the chelated ester species.140,141... [Pg.428]

Alcohols A suitable acid (see above) Esters Acid or base hydrolysis... [Pg.207]

Ester hydrolysis is the most studied and best understood of all nucleophilic acyl sub stitutions Esters are fairly stable in neutral aqueous media but are cleaved when heated with water m the presence of strong acids or bases The hydrolysis of esters m dilute aqueous acid is the reverse of the Eischer esterification (Sections 15 8 and 19 14)... [Pg.848]

In an extension of the work described m the preceding section Bender showed that basic ester hydrolysis was not concerted and like acid hydrolysis took place by way of a tetrahedral intermediate The nature of the experiment was the same and the results were similar to those observed m the acid catalyzed reaction Ethyl benzoate enriched m 0 at the carbonyl oxygen was subjected to hydrolysis m base and samples were isolated before saponification was complete The recovered ethyl benzoate was found to have lost a por tion of Its isotopic label consistent with the formation of a tetrahedral intermediate... [Pg.855]

Carboxyhc acid ester, carbamate, organophosphate, and urea hydrolysis are important acid/base-catalyzed reactions. Typically, pesticides that are susceptible to chemical hydrolysis are also susceptible to biological hydrolysis the products of chemical vs biological hydrolysis are generally identical (see eqs. 8, 11, 13, and 14). Consequentiy, the two types of reactions can only be distinguished based on sterile controls or kinetic studies. As a general rule, carboxyhc acid esters, carbamates, and organophosphates are more susceptible to alkaline hydrolysis (24), whereas sulfonylureas are more susceptible to acid hydrolysis (25). [Pg.218]

Uses ndReactions. Dihydromyrcene is used primarily for manufacture of dihydromyrcenol (25), but there are no known uses for the pseudocitroneUene. Dihydromyrcene can be catalyticaUy hydrated to dihydromyrcenol by a variety of methods (103). Reaction takes place at the more reactive tri-substituted double bond. Reaction of dihydromyrcene with formic acid gives a mixture of the alcohol and the formate ester and hydrolysis of the mixture with base yields dihydromyrcenol (104). The mixture of the alcohol and its formate ester is also a commercially avaUable product known as Dimyrcetol. Sulfuric acid is reported to have advantages over formic acid and hydrogen chloride in that it is less compUcated and gives a higher yield of dihydromyrcenol (105). [Pg.418]

Chemistry. Poly(vinyl acetate) can be converted to poly(vinyl alcohol) by transesterification, hydrolysis, or aminolysis. Industrially, the most important reaction is that of transesterification, where a small amount of acid or base is added in catalytic amounts to promote the ester exchange. [Pg.484]

A novel route to azelaic acid is based on butadiene. Butadiene is dimerized to 1,5-cyclooctadiene, which is carbonylated to the monoester in the presence of an alcohol. Hydrolysis of this ester foUowed by a caustic cleavage step produces azelaic acid in both high yield and purity (56). [Pg.62]

Kinetic Considerations. Extensive kinetic and mechanistic studies have been made on the esterification of carboxyHc acids since Berthelot and Saint-GiHes first studied the esterification of acetic acid (18). Although ester hydrolysis is catalyzed by both hydrogen and hydroxide ions (19,20), a base-catalyzed esterification is not known. A number of mechanisms for acid- and base-catalyzed esterification have been proposed (4). One possible mechanism for the bimolecular acid-catalyzed ester hydrolysis and esterification is shown in equation 2 (6). [Pg.374]

Hydrolysis. Esters are cleaved (hydroly2ed) into an acid and an alcohol through the action of water. This hydrolysis is cataly2ed by acids or bases. The mechanistic aspects of ester hydrolysis have received considerable attention and have been reviewed (16). For most esters only two reaction pathways are important. Both mechanisms involve a tetrahedral intermediate and addition-elimination reactions i7i7... [Pg.388]

Hydrolysis of esters is speeded up by both acids and bases. Soluble aflcylaiyl sulfonic acids or sulfonated ion exchange resins are suitable. [Pg.2095]

Borate esters are hydrolyzed with aqueous acid or base. More sterically hindered borates such as pinanediol derivatives are quite stable to hydrolysis. Borates are stable to anhydrous acid and base, HBr/BzOOBz, NaH, and Wittig reactions. ... [Pg.115]

Specific acid and base Hydrolysis of esters Ri COOR. + H.O = Ri COOH + R.OH... [Pg.27]

Conversion of Esters into Carboxylic Acids Hydrolysis An ester is hydrolyzed, either by aqueous base or by aqueous acid, to yield a carboxylic acid plus an alcohol. [Pg.809]

Conversion of Amides into Carboxylic Acids Hydrolysis Amides undergo hydrolysis to yield carboxylic acids plus ammonia or an amine on heating in either aqueous acid or aqueous base. The conditions required for amide hydrolysis are more severe than those required for the hydrolysis of add chlorides or esters but the mechanisms are similar. Acidic hydrolysis reaction occurs by nucleophilic addition of water to the protonated amide, followed by transfer of a proton from oxygen to nitrogen to make the nitrogen a better leaving group and subsequent elimination. The steps are reversible, with the equilibrium shifted toward product by protonation of NH3 in the final step. [Pg.814]

A reaction with a rate constant that conforms to Eq. (10-21)—particularly to the feature that the catalysts are H+ and OH-, and not weak acids and bases—is said to show specific acid-base catalysis. This phenomenon is illustrated by the kinetic data for the hydrolysis of methyl o-carboxyphenyl acetate16 (the methyl ester of aspirin— compare with Section 6.6) ... [Pg.232]

When a carbonyl group is bonded to a substituent group that can potentially depart as a Lewis base, addition of a nucleophile to the carbonyl carbon leads to elimination and the regeneration of a carbon-oxygen double bond. Esters undergo hydrolysis with alkali hydroxides to form alkali metal salts of carboxylic acids and alcohols. Amides undergo hydrolysis with mineral acids to form carboxylic acids and amine salts. Carbamates undergo alkaline hydrolysis to form amines, carbon dioxide, and alcohols. [Pg.534]

Whereas nonionic ethylene oxide adducts discolor badly on contact with sodium hydroxide, phosphate derivatives of these nonionics exhibit good color stability even under these conditions. But in the presence of strong acids poly-oxyethylated phosphate esters undergo hydrolysis to the base nonionic and phosphoric acid. However, the free surface-active acids by themselves show little tendency to hydrolyze. They have a pH value of 2 in aqueous solution. [Pg.564]

Taft, following Ingold," assumed that for the hydrolysis of carboxylic esters, steric, and resonance effects will be the same whether the hydrolysis is catalyzed by acid or base (see the discussion of ester-hydrolysis mechanisms. Reaction 10-10). Rate differences would therefore be caused only by the field effects of R and R in RCOOR. This is presumably a good system to use for this purpose because the transition state for acid-catalyzed hydrolysis (7) has a greater positive charge (and is hence destabilized by —I and stabilized by +1 substituents) than the starting ester. [Pg.371]

The same framework of eight possible mechanisms that was discussed for ester hydrolysis can also be applied to amide hydrolysis. Both the acid- and base-catalyzed hydrolyses are essentially irreversible, since salts are formed in both cases. For basic catalysis the mechanism is Bac2-... [Pg.475]

Many xenobiotics, both synthetic and natnrally occuring, are lipophilic esters. They can be degraded to water-soluble acids and bases by hydrolytic attack. Two important examples of esteratic hydrolysis in ecotoxicology now follow ... [Pg.36]

The most widely used homogeneous catalysts are simple acids and bases which catalyse well-known reactions such as ester and amide hydrolysis, and esterification. Such catalysts are inexpensive enough that they can be neutralized, easily separated fi om organic materials, and disposed of. This, of course, is not a good example of green chemistry and contributes to the huge quantity of aqueous salt waste generated by industry. [Pg.109]

The superiority of extractive hydrolysis over acid hydrolysis with respect to its productivity, yield, raw materials, and waste streams, for the transformation of drug intermediates (e.g. for Primaxin) in formate ester form to the corresponding alcohol, has been effectively demonstrated by King et al. (1985). They carried out the hydrolysis of the relevant formate ester with simultaneous extraction of the desired product from the undesired impurities by two-phase reaction/extraction with a base. [Pg.140]


See other pages where Esters, acid/base hydrolysis is mentioned: [Pg.55]    [Pg.393]    [Pg.508]    [Pg.114]    [Pg.6]    [Pg.31]    [Pg.477]    [Pg.54]    [Pg.90]    [Pg.71]    [Pg.86]    [Pg.318]    [Pg.164]    [Pg.778]    [Pg.371]    [Pg.467]    [Pg.470]    [Pg.470]    [Pg.234]    [Pg.279]    [Pg.151]    [Pg.303]    [Pg.73]   
See also in sourсe #XX -- [ Pg.208 ]




SEARCH



Bases. esters

Ester-based

© 2024 chempedia.info