Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ester derivatives, reduction

Other methods for the preparation of cyclohexanecarboxaldehyde include the catalytic hydrogenation of 3-cyclohexene-1-carboxaldehyde, available from the Diels-Alder reaction of butadiene and acrolein, the reduction of cyclohexanecarbonyl chloride by lithium tri-tcrt-butoxy-aluminum hydride,the reduction of iV,A -dimethylcyclohexane-carboxamide with lithium diethoxyaluminum hydride, and the oxidation of the methane-sulfonate of cyclohexylmethanol with dimethyl sulfoxide. The hydrolysis, with simultaneous decarboxylation and rearrangement, of glycidic esters derived from cyclohexanone gives cyclohexanecarboxaldehyde. [Pg.15]

The detritylation of N-tryphenylmethylvaleric acid ester derivatives was accomplished by catalytic hydrogenolysis, both in the standard and catalytic transfer modes.338 The trityl precursor was suspended in a mixture of EtOH and AcOH, and HC02NH4 was added. Reduction began with the addition of 10% Pd/C (0.05 mol Pd/mol) and continued for 50 hours at 25°C. [Pg.176]

Benzopyrano[4,3-e]pyrimido[l,2-6][l,2,4]triazines 759 and benzopy-rano[3,4-e]pyrimido[l,2-6][l,2,4]triazines 762 were prepared by reaction of the aminobenzopyranotriazines 758 or 761 with /3-keto esters. Catalytic reduction of 759 and 762 afforded the tetrahydro derivatives 760 and 763, respectively (90JHC1917). [Pg.305]

It was further shown that the nonracemic stannane 70 can be prepared from the Mosher ester derivative 69 through reductive cleavage and BOM protection (equation 28). Lithiation and methylation gave the nonracemic ether with retention of configuration59. [Pg.229]

Several total syntheses of antirhine (11) and 18,19-dihydroantirhine (14) have been developed during the last decade. Wenkert et al. (136) employed a facile route to ( )-18,19-dihydroantirhine, using lactone 196 as a key building block. Base-catalyzed condensation of methyl 4-methylnicotinate (193) with methyl oxalate, followed by hydrolysis, oxidative decarboxylation with alkaline hydrogen peroxide, and final esterification, resulted in methyl 4-(methoxycar-bonylmethyl)nicotinate (194). Condensation of 194 with acetaldehyde and subsequent reduction afforded nicotinic ester derivative 195, which was reduced with lithium aluminum hydride, and the diol product obtained was oxidized with manganese dioxide to yield the desired lactone 196. Alkylation of 196 with tryptophyl bromide (197) resulted in a pyridinium salt whose catalytic reduction... [Pg.178]

The stereoselective total synthesis of both ( )-corynantheidine (61) (170,171) (alio stereoisomer) and ( )-dihydrocorynantheine (172) (normal stereoisomer) has been elaborated by Szdntay and co-workers. The key intermediate leading to both alkaloids was the alio cyanoacetic ester derivative 315, which was obtained from the previously prepared ketone 312 (173) by the Knoevenagel condensation accompanied by complete epimerization at C-20 and by subsequent stereoselective sodium borohydride reduction. ( )-Corynantheidine was prepared by modification of the cyanoacetate side chain esterification furnished diester 316, which underwent selective lithium aluminum hydride reduction. The resulting sodium enolate of the a-formyl ester was finally methylated to racemic corynantheidine (171). [Pg.198]

Dihydrocorynantheine was obtained via similar steps from normal cyanoacetic ester 319 (172). Stereoselective transformation of the alio cyanoacetic ester 315 to the normal stereoisomer 319 was achieved by utilizing a unique epimerization reaction of the corresponding quinolizidine-enamine system (174). Oxidation of alio cyanoacetic ester 315 with lead tetraacetate in acetic acid medium, followed by treatment with base, yielded the cis-disubstituted enamine 317, which slowly isomerized to the trans isomer 318. It has been proved that this reversible eipmerization process occurs at C-15. The ratio of trans/cis enamines (318/317) is about 9 1. The sodium borohydride reduction of 318 furnished the desired cyanoacetic ester derivative 319 with normal stereo arrangement. The details of the C-15 epimerization mechanism are discussed by B rczai-Beke etal. (174). [Pg.198]

Among the strategies developed for the preparation of optically active ester derivatives, the bakers yeast reduction of the corresponding 0-ketoesters is one of the most useful methods. Because of its low cost, ready availability and its utility, bakers yeast can be considered as a relatively simple reagent which is very easy to handle11-31. [Pg.137]

With both building blocks 103 and 109 in hand, the total synthesis of lb was completed as shown in Scheme 17. Coupling of acid 103 and alcohol 109 under Yamaguchi conditions to give ester 110 and subsequent desilylation followed by chemoselective oxidation provided hydroxy acid 111. Lactonization of the 2-thiopyridyl ester derived from 111 in the presence of cupric bromide produced the macrodiolide 112 in 62% yield, which was finally converted to pamamycin-607 (lb) via one-pot azide reduction/double reductive AT-methylation. In summary, 36 steps were necessary to accomplish the synthesis of lb from alcohols 88 and 104, sulfone 91, ketone 93, and iodide rac-97. [Pg.230]

Section III,B> ) The two methyl groups in 34 were formed from the corresponding methyl esters via reduction to the bis-hydroxymethyl compound followed by ditosylation and reduction with LAH. Both the intermediate diester and the derived dialcohol were separately cyclized to give the corresponding octahydrodibenzothiophenes (50% and 80%, respectively). However, no attempt to dehydrogenate these compounds to the dibenzothiophenes was made. This reaction obviously has considerable potential. [Pg.228]

Types of compounds are arranged according to the following system hydrocarbons and basic heterocycles hydroxy compounds and their ethers mercapto compounds, sulfides, disulfides, sulfoxides and sulfones, sulfenic, sulfinic and sulfonic acids and their derivatives amines, hydroxylamines, hydrazines, hydrazo and azo compounds carbonyl compounds and their functional derivatives carboxylic acids and their functional derivatives and organometallics. In each chapter, halogen, nitroso, nitro, diazo and azido compounds follow the parent compounds as their substitution derivatives. More detail is indicated in the table of contents. In polyfunctional derivatives reduction of a particular function is mentioned in the place of the highest functionality. Reduction of acrylic acid, for example, is described in the chapter on acids rather than functionalized ethylene, and reduction of ethyl acetoacetate is discussed in the chapter on esters rather than in the chapter on ketones. [Pg.321]

List was the first to explore this possibility, examining the Hantzsch ester mediated reduction of a,P-unsaturated aldehydes [209], Using 20 mol% of the binaphthyl derived phosphonate salt of morpholine (153) in dioxane at 50 °C, a series of P-aryl a,P-unsaturated aldehydes underwent transfer hydrogenation with Hantzsch ester 154 with excellent levels of absolute stereocontrol (96-98% ee) (Scheme 63). The method was also applied to the aliphatic substrates ( )-citral and famesal to give the mono-reduced products in 90% and 92% ee, respectively. Significantly, in line with many of the chiral secondary amine catalysed transformations described above the reactions follow a simple and practical procedure without the need for exclusion of moisture and air. [Pg.330]

The ester derivative of pyrrolo-benzoxazepine 403 (Scheme 84) has been transformed into ketone 404 with methyl lithium, while ester 406 was synthesized by esterification with acetyl bromide of alcohol 405, prepared by LAH reduction of 403 (1996JMC3435). [Pg.62]

The two main resin linkers developed so far are shown in Scheme 18, i.e. tris(alk-oxy)benzylamide- 412 and 4-alkoxybenzylamide-type linkers)341 the former being TFA labile and thus fully compatible with Fmoc/tBu and the latter strongly acid labile and correspondingly compatible with Boc/Bzl chemistry. As shown in the case of the tris(alk-oxy)benzaldehyde handle such handles may be introduced into the C-terminal amino acid ester by reductive amination, and after suitable N -protection coupled to amino-functionalized resins (see Scheme 18). Alternatively, the tris(alkoxy)benzaldehyde-functionalized resin, BAL resin, (see Scheme 14) is used to link the C-terminal amino acid ester by reductive amination. To overcome the difficult acylation of the V -arylamino acid ester derivative on resin (best results with 10 equivalent symmetrical anhydrides), synthesis in solution of the C-terminal dipeptide building block containing the amide handle followed by its attachment to the resin has been proposed)341 ... [Pg.498]

The enzyme-catalyzed regio- and enantioselective reduction of a- and/or y-alkyl-substituted p,5-diketo ester derivatives would enable the simultaneous introduction of up to four stereogenic centers into the molecule by two consecutive reduction steps through dynamic kinetic resolution with a theoretical maximum yield of 100%. Although the dynamic kinetic resolution of a-substituted P-keto esters by chemical [14] or biocatalytic [15] reduction has proven broad applicability in stereoselective synthesis, the corresponding dynamic kinetic resolution of 2-substituted 1,3-diketones is rarely found in the literature [16]. [Pg.388]

R Hayakawa, K Nozawa, M Shimizu, T Fujisawa. Control of enantioselectivity in the baker s yeast reduction of (3-keto ester derivatives in the presence of a sulfur compound. Tetrahedron Lett 67-70, 1998. [Pg.205]


See other pages where Ester derivatives, reduction is mentioned: [Pg.118]    [Pg.149]    [Pg.89]    [Pg.20]    [Pg.325]    [Pg.681]    [Pg.353]    [Pg.443]    [Pg.46]    [Pg.382]    [Pg.11]    [Pg.202]    [Pg.169]    [Pg.39]    [Pg.217]    [Pg.445]    [Pg.1221]    [Pg.962]    [Pg.211]    [Pg.211]    [Pg.307]    [Pg.326]    [Pg.37]    [Pg.596]    [Pg.103]    [Pg.291]    [Pg.87]    [Pg.312]    [Pg.312]    [Pg.313]   
See also in sourсe #XX -- [ Pg.159 , Pg.160 , Pg.161 , Pg.162 , Pg.163 , Pg.198 ]




SEARCH



Derivatives, reduction

Ester derivation

Ester derivatives

Esters reduction

Hantzsch ester derivatives reduction

© 2024 chempedia.info