Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

ESEEM electron spin-echo spectroscopy

Double-resonance spectroscopy involves the use of two different sources of radiation. In the context of EPR, these usually are a microwave and a radiowave or (less common) a microwave and another microwave. The two combinations were originally called ENDOR (electron nuclear double resonance) and ELDOR (electron electron double resonance), but the development of many variations on this theme has led to a wide spectrum of derived techniques and associated acronyms, such as ESEEM (electron spin echo envelope modulation), which is a pulsed variant of ENDOR, or DEER (double electron electron spin resonance), which is a pulsed variant of ELDOR. The basic principle involves the saturation (partially or wholly) of an EPR absorption and the subsequent transfer of spin energy to a different absorption by means of the second radiation, leading to the detection of the difference signal. The requirement of saturability implies operation at close to liquid helium, or even lower, temperatures, which, combined with long experimentation times, produces a... [Pg.226]

CEMS = conversion electron Mossbauer spectroscopy DFT = density functional theory EFG = electric field gradient EPR = electron paramagnetic resonance ESEEM = electron spin echo envelope modulation spectroscopy GTO = Gaussian-type orbitals hTH = human tyrosine hydroxylase MIMOS = miniaturized mossbauer spectrometer NFS = nuclear forward scattering NMR = nuclear magnetic resonance RFQ = rapid freeze quench SAM = S -adenosyl-L-methionine SCC = self-consistent charge STOs = slater-type orbitals TMP = tetramesitylporphyrin XAS = X-ray absorption spectroscopy. [Pg.2841]

EPR = Electron paramagnetic resonance EXAFS = Extended X-ray fine stmctnre analysis ESEEM = Electron spin echo envelope spectroscopy XANES = X-ray absorption near edge stmctnre analysis NMR = Nnclear magnetic resonance. [Pg.5011]

ESEEM, Electron Spin Echo Envelope Modulation Spectroscopy... [Pg.110]

The following sections provide a more detailed description of the hyperfine interaction as measured by ENDOR spectroscopy, a description of ENDOR instrumentation, and the types of ENDOR experiments that can be performed. Finally, examples of the application of ENDOR spectroscopy to a variety of biomolecules are described. In this brief review many statements are made without reference for details the reader is referred to the variety of more extensive works for the theory of EPR and hyperfine interactions and reviews of applications of continuous wave (cw) and pulsed ENDOR and ESEEM (electron spin echo envelope modulation) techniques. ... [Pg.556]

Electron spin echo spectroscopy (ESE) monitors the spontaneous generation of microwave energy as a function of the timing of a specific excitation scheme, i.e. two or more short resonant microwave pulses. This is illustrated in Fig. 7. In a typical two-pulse excitation, the initial n/2 pulse places the spin system in a coherent state. Subsequently, the spin packets, each characterized by their own Larmor precession frequency m, start to dephase. A second rx-pulse at time r effectively reverses the time evolution of the spin packet magnetizations, i.e. the spin packets start to rephase, and an emission of microwave energy (the primary echo) occurs at time 2r. The echo ampHtude, as a fvmction of r, constitutes the ESE spectrum and relaxation processes lead to an irreversible loss of phase correlation. The characteristic time for the ampHtude decay is called the phase memory time T. This decay is often accompanied by a modulation of the echo amplitude, which is due to weak electron-nuclear hyperfine interactions. The analysis of the modulation frequencies and ampHtudes forms the basis of the electron spin echo envelope modulation spectroscopy (ESEEM). [Pg.310]

During the past two decades or so, CW-ENDOR has given way to Pulsed-ENDOR, and the growing availability of pulsed facilities has also opened up ESEEM (Electron Spin Echo Envelope Modulation) and HYSCORE (Hyperfine Sublevel Correlation Spectroscopy) methods. It is quite clear that there is no universal EPR experiment. [Pg.679]

Advanced EPR techniques such as CW and pulsed ENDOR, electron spin-echo envelope modulation (ESEEM), and two-dimensional (2D)-hyperfine sublevel correlation spectroscopy (HYSCORE) have been successfully used to examine complexation and electron transfer between carotenoids and the surrounding media in which the carotenoid is located. [Pg.168]

Y. Deligiannakis, M. Louloudi and N. Hadjiliadis, Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers, Coord. Chem. Rev., 2000, 204, 1. [Pg.164]

Since the phenoxyls possess an S = ground state, they have been carefully studied by electron paramagnetic spectroscopy (EPR) and related techniques such as electron nuclear double resonance (ENDOR), and electron spin-echo envelope modulation (ESEEM). These powerful and very sensitive techniques are ideally suited to study the occurrence of tyrosyl radicals in a protein matrix (1, 27-30). Careful analysis of the experimental data (hyperfine coupling constants) provides experimental spin densities at a high level of precision and, in addition, the positions of these tyrosyls relative to other neighboring groups in the protein matrix. [Pg.155]

We do not know exactly where the hydrogen binds at the active site. We would not expect it to be detectable by X-ray diffraction, even at 0.1 nm resolution. EPR (Van der Zwaan et al. 1985), ENDOR (Fan et al. 1991b) and electron spin-echo envelope modulation (ESEEM) (Chapman et al. 1988) spectroscopy have detected hyperfine interactions with exchangeable hydrous in the NiC state of the [NiFe] hydrogenase, but have not so far located the hydron. It could bind to one or both metal ions, either as a hydride or H2 complex. Transition-metal chemistry provides many examples of hydrides and H2 complexes (see, for example. Bender et al. 1997). These are mostly with higher-mass elements such as osmium or ruthenium, but iron can form them too. In order to stabilize the compounds, carbonyl and phosphine ligands are commonly used (Section 6). [Pg.178]

Valuable spectroscopic studies on the dithiolene chelated to Mo in various enzymes have been enhanced by the knowledge of the structure from X-ray diffraction. Plagued by interference of prosthetic groups—heme, flavin, iron-sulfur clusters—the majority of information has been gleaned from the DMSO reductase system. The spectroscopic tools of X-ray absorption spectroscopy (XAS), electronic ultraviolet/visible (UV/vis) spectroscopy, resonance Raman (RR), MCD, and various electron paramagnetic resonance techniques [EPR, electron spin echo envelope modulation (ESEEM), and electron nuclear double resonance (ENDOR)] have been particularly effective probes of the metal site. Of these, only MCD and RR have detected features attributable to the dithiolene unit. Selected results from a variety of studies are presented below, chosen because their focus is the Mo-dithiolene unit and organized according to method rather than to enzyme or type of active site. [Pg.515]


See other pages where ESEEM electron spin-echo spectroscopy is mentioned: [Pg.19]    [Pg.116]    [Pg.265]    [Pg.2299]    [Pg.6574]    [Pg.630]    [Pg.630]    [Pg.121]    [Pg.374]    [Pg.204]    [Pg.154]    [Pg.6573]    [Pg.170]    [Pg.295]    [Pg.310]    [Pg.5324]    [Pg.20]    [Pg.402]    [Pg.93]    [Pg.109]    [Pg.24]    [Pg.133]    [Pg.228]    [Pg.245]    [Pg.257]    [Pg.195]    [Pg.146]    [Pg.146]    [Pg.83]   


SEARCH



ESEEM (electron spin-echo

ESEEM spectroscopy

Echo spectroscopies

Electron spin echo

Electron spin spectroscopy

Electron spin-echo envelope modulation ESEEM) spectroscopy

Electron spin-echo spectroscopy

SPECTROSCOPY SPINNING

Spin-echo spectroscopy

© 2024 chempedia.info