Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Erythrocyte membrane lipids phosphatidylserine

Plasma membrane lipids are asymmetrically distributed between the two monolayers of the bilayer, although the asymmetry, unlike that of membrane proteins, is not absolute. In the plasma membrane of the erythrocyte, for example, choline-containing lipids (phosphatidylcholine and sphingomyelin) are typically found in the outer (extracellular or exoplasmic) leaflet (Fig. 11-5), whereas phosphatidylserine, phosphatidyl-ethanolamine, and the phosphatidylinositols are much more common in the inner (cytoplasmic) leaflet. Changes in the distribution of lipids between plasma membrane leaflets have biological consequences. For example, only when the phosphatidylserine in the plasma membrane moves into the outer leaflet is a platelet able to play its role in formation of a blood clot. For many other cells types, phosphatidylserine exposure on the outer surface marks a cell for destruction by programmed cell death. [Pg.373]

The membrane constituents are lipids (phospholipids, glycosphingolipids, and cholesterol Figure 10-5), carbohydrates, and proteins. The ratio of protein lipid carbohydrate on a weight basis varies considerably from membrane to membrane. For example, the human erythrocyte membrane has a ratio of about 49 43 8, whereas myelin has a ratio of 18 79 3. The composition of the normal human erythrocyte membrane is shown in Table 10-2. All membrane lipids are amphipathic (i.e., polar lipids). The polar heads of the phospholipids may be neutral, anionic, or dipolar. The surface of the membrane bears a net negative charge. The distribution of lipid constituents in the bilayer is asymmetrical. For example, in the erythrocyte membrane, phosphatidylethanolamine and phosphatidylserine are located primarily in the internal monolayer, whereas phosphatidylcholine and sphingomyelin are located in the external monolayer. [Pg.156]

A notable feature of the lipid regions of biological membranes is that the different phospholipid types may be asymmetrically distributed across the bilayer. For the erythrocyte membrane for example, it has been demonstrated by surface labelling and phospholipase digestion that the sphingomyelin and phosphatidylcholine are located in the outer half of the bilayer, whereas the phosphatidylethanolamine and phosphatidylserine are localized to the inner half (Zwaal et al., 1973). [Pg.130]

Lipids also show asymmetrical distributions between the inner and outer leaflets of the bilayer. In the erythrocyte plasma membrane, most of the phosphatidylethanolamine and phosphatidylserine are in the inner leaflet, whereas the phosphatidylcholine and sphingomyelin are located mainly in the outer leaflet. A similar asymmetry is seen even in artificial liposomes prepared from mixtures of phospholipids. In liposomes containing a mixture of phosphatidylethanolamine and phosphatidylcholine, phosphatidylethanolamine localizes preferentially in the inner leaflet, and phosphatidylcholine in the outer. For the most part, the asymmetrical distributions of lipids probably reflect packing forces determined by the different curvatures of the inner and outer surfaces of the bilayer. By contrast, the disposition of membrane proteins reflects the mechanism of protein synthesis and insertion into the membrane. We return to this topic in chapter 29. [Pg.394]

Figure 9.26 Asymmetry of phospholipids in the human erythrocyte and B. megaterium plasma membranes. "Total lipid" indicates 50% of lipid on each of the two sides of the bilayer. SM, PC, PE, PS, and PG are sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol, respectively. (Reproduced by permission from Vance DE, Vance JE. Biochemistry of Lipids and Membranes. Menlo Park Benjamin/Cummings, 1985, p. 477.)... Figure 9.26 Asymmetry of phospholipids in the human erythrocyte and B. megaterium plasma membranes. "Total lipid" indicates 50% of lipid on each of the two sides of the bilayer. SM, PC, PE, PS, and PG are sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol, respectively. (Reproduced by permission from Vance DE, Vance JE. Biochemistry of Lipids and Membranes. Menlo Park Benjamin/Cummings, 1985, p. 477.)...
A characteristic of all membranes is an asymmetry in lipid composition across the bilayer. Although most phospholipids are present in both membrane leaflets, they are commonly more abundant in one or the other leaflet. For instance, in plasma membranes from human erythrocytes and certain canine kidney cells grown in culture, almost all the sphingomyelin and phosphatidylcholine, both of which form less fluid bilayers, are found in the exoplasmic leaflet. In contrast, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol, which form more fluid bilayers, are preferentially located in the cytosolic leaflet. This segregation of lipids across the bilayer may influence membrane curvature (see Figure 5-8c). Unlike phospholipids, cholesterol is relatively evenly distributed in both leaflets of cellular membranes. [Pg.155]


See other pages where Erythrocyte membrane lipids phosphatidylserine is mentioned: [Pg.824]    [Pg.829]    [Pg.218]    [Pg.215]    [Pg.411]    [Pg.109]    [Pg.339]    [Pg.420]    [Pg.563]    [Pg.121]    [Pg.6]    [Pg.8]    [Pg.180]    [Pg.105]   
See also in sourсe #XX -- [ Pg.218 ]




SEARCH



Erythrocytes lipids

Erythrocytes membranes

Phosphatidylserine

Phosphatidylserine lipids

Phosphatidylserines

© 2024 chempedia.info