Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium constant small

Draw an Arrhenius plot of the temperature dependence of the deposition rate of a CVD reaction (at a sufficiently large temperature interval to cover both regimes) for an equilibrium constant small with respect to 1, and also for an equilibrium constant that is much larger than 1. [Pg.239]

The donor-acceptor complexes formed between electron acceptors (such as iodine or tetracyanoethylene) and electron donors (such as aliphatic amines or aromatic hydrocarbons) have, been extensively studied from various points of view -spectroscopic 5 structural and thermodynamic (3). Kinetic investigation has lagged behind, because the reactions are extremely fast and the equilibrium constants small the rate constant of one such reaction had been measured by means of our microwave apparatus (without the recent improvements), at -83 C (U). We have now determined rate constants, in 1-chlorobutane, as solvent for the reactions of zinc tetraphenyl-porphyrin with pyridine and 2-methyl pyridine, which have been well characterised by spectrophotometric methods (5, 6). They are less than the diffusion-controlled value by an order of magnitude. Further investigations are in progress. [Pg.478]

The usual situation, true for the first three cases, is that in which the reactant and product solids are mutually insoluble. Langmuir [146] pointed out that such reactions undoubtedly occur at the linear interface between the two solid phases. The rate of reaction will thus be small when either solid phase is practically absent. Moreover, since both forward and reverse rates will depend on the amount of this common solid-solid interface, its extent cancels out at equilibrium, in harmony with the thermodynamic conclusion that for the reactions such as Eqs. VII-24 to VII-27 the equilibrium constant is given simply by the gas pressure and does not involve the amounts of the two solid phases. [Pg.282]

Equilibrium constants for protein-small molecule association usually are easily measured with good accuracy it is normal for standard free energies to be known to within 0.5 kcal/mol. Standard conditions define temperature, pressure and unit concentration of each of the three reacting species. It is to be expected that the standard free energy difference depends on temperature, pressure and solvent composition AA°a also depends on an arbitrary choice of standard unit concentrations. [Pg.130]

Ihe allure of methods for calculating free energies and their associated thermod)mai values such as equilibrium constants has resulted in considerable interest in free ene calculations. A number of decisions must be made about the way that the calculatior performed. One obvious choice concerns the simulation method. In principle, eit Monte Carlo or molecular dynamics can be used in practice, molecular dynamics almost always used for systems where there is a significant degree of conformatio flexibility, whereas Monte Carlo can give very good results for small molecules which either rigid or have limited conformational freedom. [Pg.593]

The amount of enol present at equilibrium the enol content is quite small for sim pie aldehydes and ketones The equilibrium constants for enolization as shown by the following examples are much less than 1... [Pg.760]

At the equivalence point, the moles of Fe + initially present and the moles of Ce + added are equal. Because the equilibrium constant for reaction 9.16 is large, the concentrations of Fe and Ce + are exceedingly small and difficult to calculate without resorting to a complex equilibrium problem. Consequently, we cannot calculate the potential at the equivalence point, E q, using just the Nernst equation for the analyte s half-reaction or the titrant s half-reaction. We can, however, calculate... [Pg.333]

The product is equal to the equilibrium constant X for the reaction shown in equation 30. It is generally considered that a salt is soluble if > 1. Thus sequestration or solubilization of moderate amounts of metal ion usually becomes practical as X. approaches or exceeds one. For smaller values of X the cost of the requited amount of chelating agent may be prohibitive. However, the dilution effect may allow economical sequestration, or solubilization of small amounts of deposits, at X values considerably less than one. In practical appHcations, calculations based on concentration equihbrium constants can be used as a guide for experimental studies that are usually necessary to determine the actual behavior of particular systems. [Pg.391]

In this mechanism, a complexation of the electrophile with the 7t-electron system of the aromatic ring is the first step. This species, called the 7t-complex, m or ms not be involved directly in the substitution mechanism. 7t-Complex formation is, in general, rapidly reversible, and in many cases the equilibrium constant is small. The 7t-complex is a donor-acceptor type complex, with the n electrons of the aromatic ring donating electron density to the electrophile. No position selectivity is associated with the 7t-complex. [Pg.553]

Evidently the perturbation is small enough if r <<< 1, so the extent of the acceptable perturbation is governed by the concentrations and the equilibrium constant. For Scheme I it is seen that r = 0, so the perturbation in this case is not limited to small values. Brouillard and co-workers have analyzed many systems from this point of view. [Pg.139]

The sensitivity of the equilibrium constant to temperature, therefore, depends upon the enthalpy change AH . This is usually not a serious limitation, because most reaction enthalpies are sufficiently large and because we commonly require that the perturbation be a small one so that the linearization condition is valid. If AH is so small that the T-jump is ineffective, it may be possible to make use of an auxiliary reaction in the following way Suppose the reaction under study is an acid-base reaction with a small AH . We can add a buffer system having a large AH and apply the T-jump to the combined system. The T-jump will alter the Ka of the buffer reaction, resulting in a pH jump. The pH jump then acts as the forcing function on the reaction of interest. [Pg.143]

Although AGrxn depends on both enthalpy and entropy, there are many reactions for which the entropy contribution is small, and can be neglected. Thus, if AHjxn = AErxn, wc cuu estimate equilibrium constants for such reactions by the following equation ... [Pg.14]

A prediction of AE /AEq to within 0.1 kcal/mol may produce a AG /AGq accurate to maybe 0.2 kcal/mol. This corresponds to a factor of 1.4 error (at T = 300 K) in the rate/equilibrium constant, which is poor compared to what is routinely obtained by experimental techniques. Calculating AG /AGq to within 1 kcal/mol is still only possible for fairly small systems. This corresponds to predicting the absolute rate constant, or the equilibrium distribution, to within a factor of... [Pg.306]

Since the domain explored will always be a very small part of the possible cases of tautomerism, it is essential to have general rules for families of compounds, substituents, and solvents. This chemical approach is maintained in this chapter, although the importance of the calculations is recognized. The following discussion begins with calculation of tautomeric equilibrium constants, followed by the combined use of theoretical calculations and experimental results (an increasingly expanding field) and ends with the calculations of the mechanisms of proton transfer between tautomers. [Pg.11]

The conductivity of a solution containing such molecular ions may be small compared with the value that would result from complete dissociation into atomic ions. In this way, in the absence of neutral molecules, we can have a weak electrolyte. The association constant for (29) has a value that is, of course, the reciprocal of the dissociation constant for the molecular ion (PbCl)+ the logarithms of the two equilibrium constants have the same numerical value, but opposite sign. [Pg.39]

What typically happens for an energetically unfavorable reaction to occur is that it is "coupled" to an energetically favorable reaction so that the overall free-energy change for the two reactions together is favorable. To understand what it means for reactions to be coupled, imagine that reaction 1 does not occur to any reasonable extent because il has a small equilibrium constant and is energetically unfavorable that is, the reaction has AG > 0. [Pg.1128]

This is an extremely small pressure, as you might have guessed from the small magnitude of the equilibrium constant. [Pg.335]

It is evident that the abrupt change of the potential in the neighbourhood of the equivalence point is dependent upon the standard potentials of the two oxidation-reduction systems that are involved, and therefore upon the equilibrium constant of the reaction it is independent of the concentrations unless these are extremely small. The change in redox potential for a number of typical oxidation-reduction systems is exhibited graphically in Fig. 10.15. For the MnO, Mn2+ system and others which are dependent upon the pH of the... [Pg.362]

In the region of pure CH4, the equilibrium is governed by Equation 4. For this reaction, the equilibrium constant increases with temperature so that at high enough temperatures there will be appreciable dissociation of CH4 to H2 and graphite. In the lower temperature range considered here, the thermodynamic equilibrium indicates only a very small amount of dissociation so the intersection of the graphite deposition curve with the H2-CH4 line occurs at almost pure CH4. As the temperature increases, the point of intersection will move toward pure H2 on the H2-CH4 line. [Pg.47]

Equilibrium constants for complex formation (A") have been measured for many donor-acceptor pairs. Donor-acceptor interaction can lead to formation of highly colored charge-transfer complexes and the appearance of new absorption bands in the UV-visible spectrum may be observed. More often spectroscopic evidence for complex formation takes the font) of small chemical shift differences in NMR spectra or shifts in the positions of the UV absorption maxima. In analyzing these systems it is important to take into account that some solvents might also interact with donor or acceptor monomers. [Pg.352]

More accurate information on k3 is obtainable if the equilibrium constant K is also determined at various crown ether concentrations, as shown by Nakazumi et al. (1981, 1983). The results with benzenediazonium tetrafluoroborate and 3- and 4-substituted derivatives demonstrate that k3 is not unmeasurably small, but that ky-values are generally 1-2% of k2 for complexation with 18-crown-6, 0.1-0.5% of k2 with 21-crown-7, and 2-10% of k2 with dicyclohexano-24-crown-8. A dual substituent parameter (DSP) analysis of A 3-values (Nakazumi et al., 1987) showed that the dediazoniation mechanism of the complexed diazonium ions does not differ appreciably from that of the free diazonium ions. [Pg.299]

Since nitrobenzene is a much stronger base than alkyl halides, the concentration of RCI.AICI3 will be small and hence k i will be large and, therefore, much greater than k 2. Equation (180), therefore, reduces to a third-order expression which includes the equilibrium constant k jk i) of the first step and this accounts for the lower rates with 4-nitrobenzyl chloride since it is a poorer base than the 3,4-dichloro compound. [Pg.142]

We can now begin to acquire some insight into why some reactions have large equilibrium constants and others have small ones. It follows from AGr° = AH° — TAS° and AGr° = -RT In K that... [Pg.487]

FIGURE 9.5 The size of the equilibrium constant indicates whether the reactants or the products are favored. In this diagram, the reactants are represented by blue cubes and the products by yellow cubes. Note that reactants are favored when K is small (top), products are favored when K is large (bottom), and reactants and products are in equal abundance when K = 1. [Pg.488]

The equilibrium constant is Ka3 = 2.1 X 10 13, a very small value. We assume that the concentration of H30+ calculated in step 1 and the concentration of FIP042 calculated in step 2 are unaffected by the additional deprotonation. [Pg.549]


See other pages where Equilibrium constant small is mentioned: [Pg.248]    [Pg.248]    [Pg.813]    [Pg.2281]    [Pg.424]    [Pg.685]    [Pg.164]    [Pg.20]    [Pg.165]    [Pg.1319]    [Pg.88]    [Pg.577]    [Pg.616]    [Pg.77]    [Pg.563]    [Pg.4]    [Pg.56]    [Pg.100]    [Pg.436]    [Pg.468]    [Pg.69]    [Pg.157]    [Pg.435]    [Pg.516]    [Pg.28]    [Pg.532]   
See also in sourсe #XX -- [ Pg.214 , Pg.215 ]

See also in sourсe #XX -- [ Pg.603 ]




SEARCH



© 2024 chempedia.info