Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium chemical reaction, effect

Cambridge) and G. Porter (London) studies of extremely fast chemical reactions, effected by disturbing the equilibrium by means of very short pulses of energy. [Pg.1298]

The Heisenberg Uncertainty Principle, describing a dispersion in location and momentum of material particles that depends inversely on their mass, gives rise to vibrational zero-point energy differences between molecules that differ only isotopically. These zero-point energy differences are the main origin of equilibrium chemical isotope effects, i.e., non-unit isotopic ratios of equilibrium constants such as K /Kj) for a reaction of molecules bearing a protium (H) atom or a deuterium (D) atom. [Pg.29]

In this paper, we focus on the effect of equilibrium chemical reaction inside the meirbrane. We consider the common reversible reaction of the form... [Pg.41]

Perhaps one reason for the non-competitiveness of liquid films as gas separators - besides the difficulties of fabricating ultra-thin porous membranes and preventing their dessication - is that the theoretical aspects of CO transport in alkaline media have not been fully explored. Solutions to the differential equations governing steady-state CO2 diffusion with non-equilibrium chemical reaction are available, and the appreciable effects of catalysts and buffers have been elucidated. However, noteworthy aspects of the equilibrium (fast reaction) regime in simple alkaline solutions have not been fully examined. [Pg.381]

Finally, let us apply LeChatelier s principle to determine the effect of temperature on an equilibrium chemical reaction. Raising the temperature of a system is equivalent to adding heat. Therefore, if the temperature of a system is raised at constant pressure, the chemical reaction will proceed in the direction that absorbs heat (i.e., in the direction of the so-called endothermic reaction). For example, the reverse reaction of Reaction (1.11) is endothermic, but the forward reaction is exothermic (i.e., heat is released by the forward reaction). Therefore, the equilibrium shifts in the forward direction if the temperature is lowered, and in the reverse direction if the temperature is raised at constant pressure. [Pg.11]

General first-order kinetics also play an important role for the so-called local eigenvalue analysis of more complicated reaction mechanisms, which are usually described by nonlinear systems of differential equations. Linearization leads to effective general first-order kinetics whose analysis reveals infomiation on the time scales of chemical reactions, species in steady states (quasi-stationarity), or partial equilibria (quasi-equilibrium) [M, and ]. [Pg.791]

Finally, a consideration of equilibrium chemistry can only help us decide what reactions are favorable. Knowing that a reaction is favorable does not guarantee that the reaction will occur. How fast a reaction approaches its equilibrium position does not depend on the magnitude of the equilibrium constant. The rate of a chemical reaction is a kinetic, not a thermodynamic, phenomenon. Kinetic effects and their application in analytical chemistry are discussed in Chapter 13. [Pg.175]

Every chemical reaction occurs at a finite rate and, therefore, can potentially serve as the basis for a chemical kinetic method of analysis. To be effective, however, the chemical reaction must meet three conditions. First, the rate of the chemical reaction must be fast enough that the analysis can be conducted in a reasonable time, but slow enough that the reaction does not approach its equilibrium position while the reagents are mixing. As a practical limit, reactions reaching equilibrium within 1 s are not easily studied without the aid of specialized equipment allowing for the rapid mixing of reactants. [Pg.624]

The standard Gibbs-energy change of reaction AG° is used in the calculation of equilibrium compositions. The standard heat of reaclion AH° is used in the calculation of the heat effects of chemical reaction, and the standard heat-capacity change of reaction is used for extrapolating AH° and AG° with T. Numerical values for AH° and AG° are computed from tabulated formation data, and AC° is determined from empirical expressions for the T dependence of the C° (see, e.g., Eq. [4-142]). [Pg.542]

For many laboratoiy studies, a suitable reactor is a cell with independent agitation of each phase and an undisturbed interface of known area, like the item shown in Fig. 23-29d, Whether a rate process is controlled by a mass-transfer rate or a chemical reaction rate sometimes can be identified by simple parameters. When agitation is sufficient to produce a homogeneous dispersion and the rate varies with further increases of agitation, mass-transfer rates are likely to be significant. The effect of change in temperature is a major criterion-, a rise of 10°C (18°F) normally raises the rate of a chemical reaction by a factor of 2 to 3, but the mass-transfer rate by much less. There may be instances, however, where the combined effect on chemical equilibrium, diffusivity, viscosity, and surface tension also may give a comparable enhancement. [Pg.2116]

Chemical themiodynamics provides tlie answer to tlie first question however, it provides information about tlie second. Reaction rates fall witliin tlie domain of chemical kinetics and are treated later in tliis section. Both equilibrium and kinetic effects must be considered in an overall engineering analysis of a chemical reaction. [Pg.123]

The molecular mechanics calculations discussed so far have been concerned with predictions of the possible equilibrium geometries of molecules in vacuo and at OK. Because of the classical treatment, there is no zero-point energy (which is a pure quantum-mechanical effect), and so the molecules are completely at rest at 0 K. There are therefore two problems that I have carefully avoided. First of all, I have not treated dynamical processes. Neither have I mentioned the effect of temperature, and for that matter, how do molecules know the temperature Secondly, very few scientists are interested in isolated molecules in the gas phase. Chemical reactions usually take place in solution and so we should ask how to tackle the solvent. We will pick up these problems in future chapters. [Pg.57]

Kinetic investigation of the reaction of cotarnine and a few aromatic aldehydes (iV-methylcotarnine, m-nitrobenzaldehyde) with hydrogen eyanide in anhydrous tetrahydrofuran showed such differences in the kinetic and thermodynamic parameters for cotarnine compared to those for the aldehydes, and also in the effect of catalysts, so that the possibility that cotarnine was reacting in the hypothetical amino-aldehyde form could be completely eliminated. Even if the amino-aldehyde form is present in concentrations under the limit of spectroscopic detection, then it still certainly plays no pfi,rt in the chemical reactions. This is also expected by Kabachnik s conclusions for the reactions of tautomeric systems where the equilibrium is very predominantly on one side. [Pg.177]

Fauske, H. K, Venting of Runaway Chemical Reactions and Non-Equilibrium Effects, Paper Presented at the 4th Internationa Symposium on Multi-Phase Flow, Miami Beach, EL, December 15-17, 1986. [Pg.546]

The acidity of a solution has pronounced effects on many chemical reactions. It is therefore important to be able to learn and control the hydrogen ion concentration. This control is obtained through application of the Equilibrium Law. Common types of calculation, based on this law, are those needed to determine KA from experimental data and those using KA to find [H+], We will illustrate both of these types, using benzoic acid, QH6COOH, as an example. [Pg.192]

Tethering may be a reversible or an irreversible process. Irreversible grafting is typically accomplished by chemical bonding. The number of grafted chains is controlled by the number of grafting sites and their functionality, and then ultimately by the extent of the chemical reaction. The reaction kinetics may reflect the potential barrier confronting reactive chains which try to penetrate the tethered layer. Reversible grafting is accomplished via the self-assembly of polymeric surfactants and end-functionalized polymers [59]. In this case, the surface density and all other characteristic dimensions of the structure are controlled by thermodynamic equilibrium, albeit with possible kinetic effects. In this instance, the equilibrium condition involves the penalties due to the deformation of tethered chains. [Pg.46]

A mechanical system, typified by a pendulum, can oscillate around a position of final equilibrium. Chemical systems cannot do so, because of the fundamental law of thermodynamics that at all times AG > 0 when the system is not at equilibrium. There is nonetheless the occasional chemical system in which intermediates oscillate in concentration during the course of the reaction. Products, too, are formed at oscillating rates. This striking phenomenon of oscillatory behavior can be shown to occur when there are dual sets of solutions to the steady-state equations. The full mathematical treatment of this phenomenon and of instability will not be given, but a simplified version will be presented. With two sets of steady-state concentrations for the intermediates, no sooner is one set established than the consequent other changes cause the system to pass quickly to the other set, and vice versa. In effect, this establishes a chemical feedback loop. [Pg.190]

Why Do We Need to Know This Material The second law of thermodynamics is the key to understanding why one chemical reaction has a natural tendency to occur bur another one does not. We apply the second law by using the very important concepts of entropy and Gibbs free energy. The third law of thermodynamics is the basis of the numerical values of these two quantities. The second and third laws jointly provide a way to predict the effects of changes in temperature and pressure on physical and chemical processes. They also lay the thermodynamic foundations for discussing chemical equilibrium, which the following chapters explore in detail. [Pg.386]

A catalyst is a substance that increases the rate of a chemical reaction without being consumed itself. We shall see a lot more of catalysts later, when we consider reaction rates in Chapter 13. However, it is important to be aware at this stage that a catalyst has no effect on the equilibrium composition of a reaction mixture. A catalyst can speed up the rate at which a reaction reaches equilibrium, but it does not affect the composition at equilibrium. It acts by providing a faster route to the same destination. [Pg.505]


See other pages where Equilibrium chemical reaction, effect is mentioned: [Pg.537]    [Pg.896]    [Pg.369]    [Pg.433]    [Pg.349]    [Pg.382]    [Pg.115]    [Pg.778]    [Pg.883]    [Pg.887]    [Pg.2115]    [Pg.172]    [Pg.220]    [Pg.151]    [Pg.246]    [Pg.319]    [Pg.556]    [Pg.257]    [Pg.948]    [Pg.201]    [Pg.153]   


SEARCH



Chemical reactions, effect

Equilibrium, chemical/reaction

© 2024 chempedia.info