Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxidized natural rubber applications

Epoxidized natural rubber is still a strain crystallizing mbber and therefore retains the high tensile strength of natural rubber. However, as can be seen from Table 5, in other respects they have very little in common. The epoxidation renders a much higher damping mbber, a much-improved resistance to oil swelling (insofar as a 50 mol % modified natural mbber has similar oil resistance to a 34% nitrile mbber), and much-reduced air permeability. This latest form of modified natural mbber therefore widens the applications base of the natural material and enables it to seek markets hitherto the sole province of some specialty synthetic mbbers. [Pg.271]

Natural rubber/chlorosulfonated polyethylene rubber blends also exhibited immiscibility. Chlorosulfonated polyethylene rubber is the synthetic rubber used for applications in electric cables, hoses for liquid chemicals, waterproof cloths, floor tiles, and oil-resistant seals. It is chosen to blend with natural rubber to improve the resistance of natural rubber to ozone, oil, heat, flame and non-polar chemicals. This is due to the effect of the polarity of the chlorine groups in the chlorosulfonated polyethylene rubber. The tensile strength, elongation at break, and tear strength of these blends decreased with the increasing chlorosulfonated polyethylene rubber contents. In addition, the compatible natural rubber/chlorosulfonated polyethylene rubber blends were improved by adding the epoxidized natural rubber (Epoxyprene 25) as a... [Pg.514]

In a sustainable future, natural rubbers will be used more and synthetic rubbers less. The epoxidation of natural rubber can be used to extend the applications or rubber and improve bonding.145... [Pg.374]

Recently, a patent application was filed on a method of chemical modifications of natural rubber and epoxidized natural rabber by alkyds made from palm... [Pg.476]

Some specific recent applications of the GC-MS technique to various types of polymers include the following PE [49,50], poly(l-octene) [51], poly(l-decene) [51], poly(l-dodecene) [51], 1-octene-l-decene-l-dodecene terpolymer [51], chlorinated polyethylene [52], polyolefins [53, 54], acrylic acid methacrylic acid copolymers [55], polyacrylates [56], styrene-butadiene and other rubbers [57-59], nitrile rubber [60], natural rubbers [61, 62], chlorinated natural rubber [63, 64], polychloroprene [65], PVC [66-68], silicones [69, 70], polycarbonates [71], styrene-isoprene copolymers [72], substituted PS [73], polypropylene carbonate [74], ethylene-vinyl acetate copolymers [75], Nylon [76], polyisopropenyl cyclohexane a-methyl styrene copolymers [77], m-cresol-novolac epoxy resins [78], polymeric flame retardants [79], poly(4-N-alkyl styrenes) [80], polyvinyl pyrrolidone [81], vinyl pyrrolidone-methyl acryloxysilicone copolymers [82], polybutylcyanoacrylate [83], polysulfide copolymers [84], poly(diethyl-2-methacryloxy)ethyl phosphate [85], ethane-carbon monoxide copolymers [86], polyetherimide [87], bisphenol A [88], ethyl styrene [89], styrene-isoprene block copolymer [89], polyvinyl alcohol-co-vinyl acetate [90], epoxide thiol [91], maleic acid-propylene copolymer [92], P-hydroxy butyrate-P-hydroxy valerate copolymer [93], polycaprolactams [39,94], PS [95,96], polypyrrole [95,96], polyhydroxy alkanoates [97], poly(p-chloromethyl) styrene [81], polybenzooxazines and siloxy substituted polyoxadisila-pentanylenes [98,99] poly benzyl methacrylates [100], polyolefin blends after ageing in soil [101] and polystyrene peroxide [43]. [Pg.150]


See other pages where Epoxidized natural rubber applications is mentioned: [Pg.903]    [Pg.903]    [Pg.427]    [Pg.520]    [Pg.561]    [Pg.108]    [Pg.270]    [Pg.263]    [Pg.95]    [Pg.529]    [Pg.187]    [Pg.119]    [Pg.1347]    [Pg.477]   
See also in sourсe #XX -- [ Pg.15 , Pg.111 ]




SEARCH



Epoxidations applications

Epoxides applications

Natural epoxidized

Natural rubber application

Rubber epoxidation

© 2024 chempedia.info