Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxidation transition metal complexes

A chiral diphosphine ligand was bound to silica via carbamate links and was used for enantioselective hydrogenation.178 The activity of the neutral catalyst decreased when the loading was increased. It clearly indicates the formation of catalytically inactive chlorine-bridged dimers. At the same time, the cationic diphosphine-Rh catalysts had no tendency to interact with each other (site isolation).179 New cross-linked chiral transition-metal-complexing polymers were used for the chemo- and enantioselective epoxidation of olefins.180... [Pg.261]

Dimethylchromene has also proven to be a useful substrate for the assessment of various transition metal complexes as epoxidation catalysts. Chiral Mn(III)-salen complexes are efficient <00CC615 00T417> and can be recycled when used in an ionic liquid <00CC837>. The enantioselective aziridination of a chromene has been achieved using a chiral biaryldiamine-derived catalyst (Scheme 22) <00JA7132>. [Pg.323]

Many examples of the phase-transfer catalysed epoxidation of a,(3-unsaturated carbonyl compounds using sodium hypochlorite have been reported [e.g. 7-10]. The addition of transition metal complexes also aids the reaction [11], but advantages in reaction time or yields are relatively insignificant, whereas the use of hexaethyl-guanidinium chloride, instead of a tetra-alkylammonium salt, enhances the rate of epoxidation while retaining the high yields (>95%) [10]. Intermediate (3-haloalkanols are readily converted into the oxiranes under basic conditions in the presence of benzyltriethylammonium chloride [12]. [Pg.434]

The properties of siloxide as ancillary ligand in the system TM-O-SiRs can be effectively utilized in molecular catalysis, but predominantly by early transition metal complexes. Mono- and di-substituted branched siloxy ligands (e.g., incompletely condensed silsesquioxanes) have been employed as more advanced models of the silanol sites on silica surface for catalytically active centers of early TM (Ti, W, V) that could be effectively used in polymerization [5], metathesis [6] and epoxidation [7] of alkenes as well as dehydrogenative coupling of silanes [8]. [Pg.293]

Jacobsen and coworkers discovered that chiral salicylimidato transition metal complexes activate epoxides in a stereoselective manner. The published mechanism indicates that one Cr° (salen)-N3 with (/ ,/ )-cyclohexyl backbone acts as Lewis acid and coordinates to the oxygen of PO, while a second catalyst molecule transfers the azide to the activated epoxide and thus opens the ring. The coplanar arrangement of the two chromium complexes prefers one enantiomer of PO and so induces stereochemical information [99,100, 121-129]. (cf. also Sect. 8.3) (Fig. 42). [Pg.83]

Mono-functionalization of Cyg affords, preferrably, C(l)-C(2) adducts (type a) (Figure 13.3). In some cases, for example, upon nucleophilic cyclopropanations they even represent the exclusively formed monoadducts [1-3,17]. Typical examples of addition reactions that afford monoadducts are epoxidations [18,19], osmylation [9], transition metal complex formations [20, 21], hydrogenation [13, 22], many cycloadditions [1, 2] and additions of nucleophiles [23]. For the formation and the chemical transformation of azahomo[70]fullerenes see also Chapter 12 (Schemes 12.4 and 12.5). [Pg.377]

The second example demonstrated immobilization via ship in a bottle , ionic, metal center, and covalent bonding approaches of the metal-salen complexes. Zeolites X and Y were highly dealuminated by a succession of different dealumi-nation methods, generating mesopores completely surrounded by micropores. This method made it possible to form cavities suitable to accommodate bulky metal complexes. The catalytic activity of transition metal complexes entrapped in these new materials (e.g, Mn-S, V-S, Co-S, Co-Sl) was investigated in stereoselective epoxidation of (-)-a-pinene using 02/pivalic aldehyde as the oxidant. The results obtained with the entrapped organometallic complex were comparable with those of the homogeneous complex. [Pg.295]

Many transition-metal complexes have been widely studied in their application as catalysts in alkene epoxidation. Nickel is unique in the respect that its simple soluble salts such as Ni(N03)2 6H20 are completely ineffective in the catalytic epoxidation of alkenes, whereas soluble manganese, iron, cobalt, or copper salts in acetonitrile catalyze the epoxidation of stilbene or substituted alkenes with iodosylbenzene as oxidant. However, the Ni(II) complexes of tetraaza macrocycles as well as other chelating ligands dramatically enhance the reactivity of epoxidation of olefins (90, 91). [Pg.123]

In the last decade, transition metal complexes (e.g. metalloporphyrins) have been used to catalyze epoxidation. These entities can reproduce and mimic all reactions catalyzed by heme-enzymes (cytochromes P-450)54. Synthetic metalloporphyrins are analogous to the prosthetic group of heme-containing enzymes which selectively catalyze various oxidation reactions. The metallo complexes of Fe, Co, Cr, Mn, Al, Zn, Ru, etc. possessing porphyrin ligands have been mostly studied55 -57. Porphyrin ligands (4) are planar and can possess several redox states of the central metallic ions and hence they can exist as oxo metals. [Pg.1230]

Bruns and Haufe have described the first examples of a transition metal complex mediated asymmetric ring opening (ARO) of both meso- and racemic epoxides via formal hydro-fluorination [23]. Initial attempts with chiral Euln complexes led to very low asymmetric induction. Opening of cyclohexene oxide 30 with potassium hydrogendifluoride in the presence of 18-crown-6 and a stoichiometric amount of Jacobsens chiral chromium salen complex 29 [24a] finally yielded two products 31 and 32 in a 89 11 ratio and 92% combined yield, the desired product 31 being formed with 55% ee. Limiting 29 to a catalytic amount of 10 mol% led to an increase in the ratio of 31, however, with the enantiomeric excess dropping to 11% (Scheme 5). [Pg.205]

Since the epoxidation step involves no formal change in the oxidation state of the metal catalyst, there is no reason why catalytic activity should be restricted to transition metal complexes. Compounds of nontransition elements which are Lewis acids should also be capable of catalyzing epoxidations. In fact, Se02, which is roughly as acidic as Mo03, catalyzes these reactions.433 It is, however, significantly less active than molybdenum, tungsten, and titanium catalysts. Similarly, boron compounds catalyze these reactions but they are much less effective than molybdenum catalysts 437,438 The low activity of other metal catalysts, such as Th(IV) and Zr(IV) (which are weak oxidants) is attributable to their weak Lewis acidity. [Pg.347]

Enantioselective preparation of nonfunctionalized oxiranes 92CRV873. Epoxidation induced by transition metal complexes with N-heterocycles as ligands 92YGK997. [Pg.317]

Coordination catalysis via alkyl hydroperoxides is well documented (4, 31). Selective oxidations of olefins to epoxides (Reaction 16), using especially Group IV, V, and VI transition-metal complexes, can occur possibly via oxygen-transfer processes of the type... [Pg.260]

Oxazolin-2-ylidenes can also be used directly for coordination to metal atoms [109], but then they are not functionalised and therefore not covered by this book. However, it may be interesting to note that their generation is possible as a template synthesis in the coordination sphere of transition metal complexes using a functionalised hydroxyisocyanide [110,111] or the reaction of an epoxide with a hydrogen isocyanide complex [112]. [Pg.75]

EPOXIDATIONS VIA CATALYSIS BY FIRST-ROW TRANSITION METAL COMPLEXES... [Pg.357]

The study of mixed-ligand 0x0 derivatives is closely related to the use of these species in catalytic oxidation systems (including the epoxidation of aUcenes and the oxidation of alkanes. See Oxidation Catalysis by Transition Metal Complexes). In such complexes, the 0x0 group can be terminal, doubly bridging, or triply bridging. [Pg.4120]


See other pages where Epoxidation transition metal complexes is mentioned: [Pg.86]    [Pg.526]    [Pg.487]    [Pg.7]    [Pg.295]    [Pg.115]    [Pg.299]    [Pg.464]    [Pg.33]    [Pg.55]    [Pg.212]    [Pg.154]    [Pg.453]    [Pg.119]    [Pg.196]    [Pg.75]    [Pg.225]    [Pg.341]    [Pg.593]    [Pg.135]    [Pg.291]    [Pg.94]    [Pg.140]    [Pg.321]    [Pg.4124]    [Pg.5850]    [Pg.375]   
See also in sourсe #XX -- [ Pg.120 ]




SEARCH



Epoxides complex

Epoxides metalation

Homogeneous epoxidation transition metal complexes

Metal epoxidations

Metallated epoxides

Olefin epoxidation transition metal complexes

Transition epoxidation

Transition metal complexes epoxidation catalysis

© 2024 chempedia.info