Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxidation strategy

When asymmetric epoxidation of a diene is not feasible, an indirect route based on asymmetric dihydroxylation can be employed. The alkene is converted into the corresponding syn-diol with high enantioselectivity, and the diol is subsequently transformed into the corresponding trans-epoxide in a high-yielding one-pot procedure (Scheme 9.5) [20]. No cpirricrizalion occurs, and the procedure has successfully been applied to natural product syntheses when direct epoxidation strategies have failed [21]. Alternative methods for conversion of vicinal diols into epoxides have also been reported [22, 23]. [Pg.319]

Hu, H., Yu, M.X., Li, F.Y., etal. (2008) Facile epoxidation strategy for producing amphiphilic up-converting rare-earfli nanophosphors as biological labels. Chemistry of Materials, 20, 7003—7009. [Pg.570]

Recent syntheses of steroids apply efficient strategies in which open-chain or monocyclic educts with appropiate side-chains are stereoselectively cyclized in one step to a tri- or tetracyclic steroid precursor. These procedures mimic the biochemical synthesis scheme where acyclic, achiral squalene is first oxidized to a 2,3-epoxide containing one chiral carbon atom and then enzymatically cyclized to lanostetol with no less than seven asymmetric centres (W.S. Johnson, 1%8, 1976 E.E. van Tamden, 1968). [Pg.279]

Since cbiral sulfur ylides racemize rapidly, they are generally prepared in situ from chiral sulfides and halides. The first example of asymmetric epoxidation was reported in 1989, using camphor-derived chiral sulfonium ylides with moderate yields and ee (< 41%) Since then, much effort has been made in tbe asymmetric epoxidation using sucb a strategy without a significant breakthrough. In one example, the reaction between benzaldehyde and benzyl bromide in the presence of one equivalent of camphor-derived sulfide 47 furnished epoxide 48 in high diastereoselectivity (trans cis = 96 4) with moderate enantioselectivity in the case of the trans isomer (56% ee). ... [Pg.6]

The essential features of the Masamune-Sharpless hexose synthesis strategy are outlined in a general way in Scheme 4. The strategy is based on the reiterative- application of a two-carbon extension cycle. One cycle comprises the following four key transformations (I) homologation of an aldehyde to an allylic alcohol (II) Sharpless asymmetric epoxidation of the allylic alcohol ... [Pg.298]

The retrosynthetic analysis presented in Scheme 6 (for 1, 2, and 16-19) focuses on these symmetry elements, and leads to the design of a strategy that utilizes the readily available enantiomers of xylose and tartaric acid as starting materials and/or chiral auxiliaries to secure optically active materials.14 Thus by following the indicated disconnections in Scheme 6, the initially generated key intermediates 16-19 can be traced to epoxide 23 (16,19 =>23),... [Pg.427]

Unfortunately, the highest enantioselectivity so far obtained for the synthesis of styrene oxide by this route is only 57 % ee with Goodman s sulfide 30 [21]. Thus methylidene transfer is not yet an effective strategy for the synthesis of terminal epoxides. [Pg.13]

Mori et al. have demonstrated the most dramatic uses of lithiated epoxides in natural product synthesis [62]. By employing the chemistry developed by Jackson, and subsequently performing a Lewis acid-catalyzed (BF3 OEt2) cyclisation, tetra-hydrofuran, tetrahydropyran, and oxepane rings are readily accessed this strategy is demonstrated by the synthesis of the marine epoxy lipid 173 (Scheme 5.40) [63]. [Pg.165]

The use of an ester as an anion-stabilizing group for a lithiated epoxide was demonstrated by Eisch and Galle (Table 5.5, Entry 11). This strategy has been extended to a,P-epoxy-y-butyrolactone 191, which could be deprotonated with LDA and trapped in situ with chlorotrimethylsilane to give 192, which was used in a total synthesis of epolactaene (Scheme 5.45) [69], The use of a lactone rather than a... [Pg.168]

Jacobsen demonstrated that the (salen)Cr system used to effect intermolecular, cooperative asymmetric azidolysis of meso-epoxides (Schemes 7.3 and 7.5) could be applied to sulfur-centered nucleophiles (Scheme 7.13). In order to overcome moderate enantioselectivity (<60% ee), a dithiol nucleophile was employed as part of a double resolution strategy in which the minor enantiomer of the monoaddition product reacts preferentially to form the meso- bis-addition product, thereby increasing the ee of the C2-symmetric bis-addition product. Enantiopure 1,2-mer-capto alcohols (>99% ee) were obtained from the meso-epoxide in ca. 50% overall yield by a burdensome (though effective) multistep sequence, [23]. [Pg.236]

A new iterative strategy for enantio- and diastereoselective syntheses of all possible stereoisomers of 1,3-polyol arrays has been described by Shibasaki. This strategy relies on a highly catalyst-controlled epoxidation of a, 3-unsaturated morpholi-nyl amides promoted by the Sm-BIN0L-Ph3As=0 complex, followed by the con-... [Pg.294]


See other pages where Epoxidation strategy is mentioned: [Pg.127]    [Pg.127]    [Pg.248]    [Pg.28]    [Pg.2]    [Pg.233]    [Pg.297]    [Pg.127]    [Pg.127]    [Pg.248]    [Pg.28]    [Pg.2]    [Pg.233]    [Pg.297]    [Pg.327]    [Pg.212]    [Pg.294]    [Pg.295]    [Pg.297]    [Pg.298]    [Pg.299]    [Pg.303]    [Pg.313]    [Pg.313]    [Pg.429]    [Pg.436]    [Pg.448]    [Pg.733]    [Pg.734]    [Pg.750]    [Pg.752]    [Pg.761]    [Pg.141]    [Pg.200]    [Pg.230]    [Pg.250]    [Pg.257]    [Pg.273]    [Pg.274]    [Pg.275]    [Pg.282]    [Pg.293]    [Pg.295]   
See also in sourсe #XX -- [ Pg.127 ]

See also in sourсe #XX -- [ Pg.127 ]




SEARCH



Synthesis Strategies Involving Epoxides

© 2024 chempedia.info