Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme activation order

Enzyme Assays. An enzyme assay determines the amount of enzyme present in sample. However, enzymes are usually not measured on a stoichiometric basis. Enzyme activity is usually determined from a rate assay and expressed in activity units. As mentioned above, a change in temperature, pH, and/or substrate concentration affects the reaction velocity. These parameters must therefore be carefully controlled in order to achieve reproducible results. [Pg.288]

Figure 4.1. Representation of the pore structure of HZSM5, one of the most important zeolites industrially. The vertical cylinders represent one pore network, and the other cylinders an interconnecting network. The narrow pores, and their almost complete uniformity, means that only some molecules can enter. Others are excluded, and cannot react at the active sites, which are found within the structure. Thus, the reactivity of a molecule is determined by its shape and size, rather than by its electronic properties. Such a situation is almost unique, with the only exception being enzymes, where molecules must fit into the enzyme active site in order to react. Figure 4.1. Representation of the pore structure of HZSM5, one of the most important zeolites industrially. The vertical cylinders represent one pore network, and the other cylinders an interconnecting network. The narrow pores, and their almost complete uniformity, means that only some molecules can enter. Others are excluded, and cannot react at the active sites, which are found within the structure. Thus, the reactivity of a molecule is determined by its shape and size, rather than by its electronic properties. Such a situation is almost unique, with the only exception being enzymes, where molecules must fit into the enzyme active site in order to react.
Available methods provide measurements of enzyme activity rather than of enzyme concentration. In order that the measured activity be proportional to enzyme concentration, the reaction conditions which include pH, temperature, initial substrate concentration, sample and total volume and reaction time must be held constant and be carefully controlled. [Pg.184]

The kinetics should be zero-order during the initial portion of the reaction, over a practical working range that includes the usually encountered enzyme activities. [Pg.185]

When Rhizopus sp. 26R was cultivated in the solid substrates without addition of rice bran but composed of only wheat bran and rice husk at the ratio of 18 2. The pectinase activity from the culture was approx. 25-35 unit/ml within 2 days and the production remained constant for 4 days (Figure 3). One gram of raw starch from cassava tuber, 1 g of pectin or 0.5 g of yeast extract was added to the solid substrates in order to induce higher activity of the enzsrme. The results showed that either 1 g raw cassava starch or 1 g pectin that was added to the 20 g solid substrates increased the enzyme activity to 1.7 and 2.4 times, respectively (Figure 3). The production of pectinase in soHd substrates with wheat bran and rice husk could be enhanced with the addition of raw cassava starch and pectin. [Pg.855]

As 1,2,5-thiadiazole analogues, potent HlV-1 reverse transcriptase inhibitors, some simple 1,2,5-oxadiazoles, compounds 4-6 (Fig. 9), have been synthesized using the traditional Wieland procedure as key for the heterocycle formation [121]. Such as thiadiazole parent compounds, derivative with chlorine atoms on the phenyl ring, i.e., 5, showed the best anti-viral activity. Selectivity index (ratio of cytotoxic concentration to effective concentration) ranked in the order of 5 > 6 > 4. The activity of Fz derivative 6 proved the N-oxide lack of relevance in the studied bioactivity. These products have been claimed in an invention patent [122]. On the other hand, compound 7 (Fig. 9) was evaluated for its nitric oxide (NO)-releasing property (see below) as modulator of the catalytic activity of HlV-1 reverse transcriptase. It was found that NO inhibited dose-dependently the enzyme activity, which is hkely due to oxidation of Cys residues [123]. [Pg.279]

E I is a kinetic chimera Kj and kt are the constants characterizing the inactivation process kt is the first-order rate constant for inactivation at infinite inhibitor concentration and K, is the counterpart of the Michaelis constant. The k,/K, ratio is an index of the inhibitory potency. The parameters K, and k, are determined by analyzing the data obtained by using the incubation method or the progress curve method. In the incubation method, the pseudo-first-order constants /cobs are determined from the slopes of the semilogarithmic plots of remaining enzyme activity... [Pg.361]

All enzymatic reactions are initiated by formation of a binary encounter complex between the enzyme and its substrate molecule (or one of its substrate molecules in the case of multiple substrate reactions see Section 2.6 below). Formation of this encounter complex is almost always driven by noncovalent interactions between the enzyme active site and the substrate. Hence the reaction represents a reversible equilibrium that can be described by a pseudo-first-order association rate constant (kon) and a first-order dissociation rate constant (kM) (see Appendix 1 for a refresher on biochemical reaction kinetics) ... [Pg.21]

Because mechanism-based inactivation depends on enzyme catalysis, there cannot be more than one molecule of inactivator bound to the enzyme active site. Thus formation of the covalent E-A species cannot result in a stoichiometry of inactivator to enzyme of greater than 1 1. In the case of multimeric enzymes, however, it may not be necessary to covalently modify all of the enzyme active sites within the multi-mer in order to effect total inactivation of the enzyme. In this situation one may observe a stoichiometry of less that 1 1. Under no circumstances, however, can a mechanism-based inactivator display a stoichiometry of greater than 1 1 with the enzyme. [Pg.231]

Soon after the first successful prebiotic syntheses of amino acids by Miller and Urey, the next step, polycondensation of these monomers, was attempted. But how could the activation of the monomers have occurred on the primeval Earth without the help of special enzymes In order to try and solve this question (in fact, there is a whole series of questions), some research groups began to work on the question using systems which were as simple as possible, in the hope of either solving it or at least coming close to an answer. [Pg.130]


See other pages where Enzyme activation order is mentioned: [Pg.289]    [Pg.457]    [Pg.298]    [Pg.301]    [Pg.301]    [Pg.327]    [Pg.117]    [Pg.341]    [Pg.380]    [Pg.1225]    [Pg.214]    [Pg.351]    [Pg.332]    [Pg.60]    [Pg.189]    [Pg.189]    [Pg.200]    [Pg.370]    [Pg.853]    [Pg.928]    [Pg.45]    [Pg.317]    [Pg.175]    [Pg.121]    [Pg.30]    [Pg.119]    [Pg.121]    [Pg.226]    [Pg.43]    [Pg.83]    [Pg.98]    [Pg.107]    [Pg.145]    [Pg.197]    [Pg.202]    [Pg.217]    [Pg.222]    [Pg.227]    [Pg.247]    [Pg.190]    [Pg.292]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Enzymes ordered

© 2024 chempedia.info