Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolpyruvylshikimic acid phosphate EPSP

Jaworski (4) reported that growth inhibition of both plant and microbes by glyphosate could be reversed by aromatic amino acids. Further work of Amrhein and his coworkers revealed that glyphosate inhibits the shikimate pathway enzyme, 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase (5). This enzyme catalyzes the reaction shown in Figure 1. Glyphosate-treated plant and bacterial cultures accumulate shikimate and/or shikimate 3-phosphate (S3P), confirming that inhibition of EPSPS is at least a part of the in vivo mechanism of action of this herbicide (6, 7). [Pg.42]

In this chapter, the discussion will concentrate on two inhibitors with a reasonable claim to selective action on enz3ones related to the shikimate pathway glyphosate, which inhibits 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase and L-a-aminooxy-3 phenylpropionic acid (L-AOPP), an inhibitor of phenylalanine ammonia-lyase (PAL) (Fig. 2). In addition to introducing a novel inhibitor of PAL, (R)-(l-amino-2-phenylethyl)phosphonic acid (APEP), previous and current efforts to design inhibitors of other shikimate pathway enzymes will be described. The treatment presented here will show that the deductions and predictions made on the basis of the abstract scheme in Figure 1 can be, and have been, tested on the basis of the real pathway presented in Figure 2. [Pg.87]

The information obtained from the application of glyphosate to complex systems strongly pointed to one of the following three enzymes as the target of the inhibitor in the shikimate pathway shikimate kinase (EC 2.7.1.71), 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19), and chorismate synthase (EC 4.6.1.4). Jointly, these three enzymes convert shikimic acid to chorismic acid in a series of interesting reactions >(Fig. 2). A defined system" had therefore to be found in which the conversion of shikimic acid to chorismic acid could be conveniently studied. [Pg.92]

When we began our synthetic program, shikimic acid had been prepared by a number of routes, and the groups of Danishefsky and Plieninger had reported syntheses of prephenic acid. The intervening intermediates, shikimate-3-phosphate (S-3-P), 5-enolpyruvylshikimate-3-phosphate (EPSP), and chorismate, were only available from natural sources or by enz)onatic transformations. [Pg.119]

The synthesis of compound (44) as a potential transition-state analogue inhibitor of isochorismate synthase (IS) has been reported/ Compounds (45) and (46) have been synthesized from the known 6-fluoroshikimic acids (J. Chem. Soc., Chem. Commun., 1989, 1386) by treatment first with shikimate kinase then 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase and shown to be competitive inhibitors of chorismate synthase/ ... [Pg.208]

Anthranilic acid (or o-amino-benzoic acid) is an aromatic acid with the formula C H NO, which consists of a substituted benzene ring with two adjacent, or "ortho- functional groups, a carboxylic acid, and an amine (Fig. 14.1). Anthranilic acid is biosynthesized from shikimic acid (for shikimic acid biosynthesis, see Chapter 10) following the chorismic acid-mediated pathway [1]. Based on its biosynthetic mechanism, shikimate is transformed to shikimate 3-phosphate with the consumption of one molecule of ATP, catalyzed by shikimate kinase. 5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase is then catalyze the addition of phosphoenolpyruvate to 3-phospho-shikimate followed by the elimination of phosphate, which leads to EPSP. EPSP is further transformed into chorismate by chorismate synthase. Chorismate reacts with glutamine to afford the final product anthranilate and glutamate pyruvate catalyzed by anthranilate synthase (Fig. 14.1). [Pg.502]

The study of inhibitors of photosynthetic carbon metabolism has, by contrast, been remarkably unsuccessful. Attempts to design herbicidal inhibitors on rational grounds on the basis of specific enzyme inhibition have not afforded herbicidal compounds that are effective on whole plants. It is possible that in many instances the chloroplast envelope proves to be an insuperable barrier. Nevertheless, recent work identifying specific enzymes such as 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, acetyl-CoA carboxylase, and acetohydroxy acid synthase has demonstrated the effectiveness of enzyme inhibitors, although none were developed on rational grounds. [Pg.23]

For example, glyphosate inhibits the enzyme, EPSP (5-enolpyruvylshikimate 3-phosphate) synthase, that catalyzes a step in the synthesis of the aromatic amino acids. Similarly, both the imidazolinones and sulfonylureas inhibit acetolactate synthase (ALS), the enzyme that catalyzes the first step in the formation of branched-chain amino acids (11). Triazine herbicides act by binding to a specific protein in the thylakoid membranes of the chloroplasts, preventing the flow of electrons and inhibiting photosynthesis (12). [Pg.11]


See other pages where Enolpyruvylshikimic acid phosphate EPSP is mentioned: [Pg.273]    [Pg.6]    [Pg.184]    [Pg.174]    [Pg.113]    [Pg.115]    [Pg.161]    [Pg.123]    [Pg.1403]    [Pg.1403]    [Pg.179]    [Pg.333]   
See also in sourсe #XX -- [ Pg.123 ]




SEARCH



5 -enolpyruvylshikimate 3 -phosphate

5-enolpyruvylshikimate

5-enolpyruvylshikimate 3-phosphat

Acidic phosphates

EPSP

EPSP, 5-enolpyruvylshikimate 3-phosphat

Enolpyruvylshikimic acid

Phosphate acid

© 2024 chempedia.info