Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolates ketene

Claisen-type rearrangements of ester enolates, ketene acetals, and silyl ketene acetals... [Pg.1336]

The reactions of nitroalkenes (42) with various enols (43b) (vinyl ethers, silyl, and acyl enolates, ketene acetals) have been studied in most detail (110, 111, 125—154). As a mle, these reactions proceed smoothly to give the corresponding nitronates (35f) in yields from high to moderate. As in the reactions with enamines, the formation of compounds (44b) is attributed to the ambident character of the anionic centers in zwitterionic intermediates analogous to those shown in Scheme 3.43. [Pg.465]

A number of cycloadditions of imines or imino compounds with a variety of alkenes, including allenes, vinyl ethers, enolates, ketene acetals, and electrophilic alkenes, afford functionalized azetidines . [Pg.658]

The formation of enolates from ketenes generates tetrasubstituted enolates regio- and stereo-selecdve-ly.s8-ei Deprotonation of the corresponding ketones gives mixtures of enolates. Ketenes are produced... [Pg.107]

Anions of methylene-active compounds (1,3-dione enolates and ester enolates), ketene acetals, and even electron-rich five-membered heterocycles comprise another group of nucleophiles that attack triazine rings, preferably in the form of l,2,3-triazin-2-ium salts. 4,6-Disubstituted-2-methyl-l,2,3-triazinium iodides add malonic ester anion at the C-5 position to form 4,6-disubstituted-2-methyl-5-bis(ethoxy-carbonyl)methyl-2,5-dihydro-l,2,3-triazines in 57-76% yield <1992CPB2283, 1996CHEC-II(6)483>. The following cases have been published more recently. [Pg.46]

Lewis acid promoted condensation of silyl ketene acetals (ester enolate equiv.) with aldehydes proceeds via "open" transition state to give anti aldols starting from either E- or Z- enolates. [Pg.86]

A more eflicient and general synthetic procedure is the Masamune reaction of aldehydes with boron enolates of chiral a-silyloxy ketones. A double asymmetric induction generates two new chiral centres with enantioselectivities > 99%. It is again explained by a chair-like six-centre transition state. The repulsive interactions of the bulky cyclohexyl group with the vinylic hydrogen and the boron ligands dictate the approach of the enolate to the aldehyde (S. Masamune, 1981 A). The fi-hydroxy-x-methyl ketones obtained are pure threo products (threo = threose- or threonine-like Fischer formula also termed syn" = planar zig-zag chain with substituents on one side), and the reaction has successfully been applied to macrolide syntheses (S. Masamune, 1981 B). Optically pure threo (= syn") 8-hydroxy-a-methyl carboxylic acids are obtained by desilylation and periodate oxidation (S. Masamune, 1981 A). Chiral 0-((S)-trans-2,5-dimethyl-l-borolanyl) ketene thioketals giving pure erythro (= anti ) diastereomers have also been developed by S. Masamune (1986). [Pg.62]

The oxidation of the cyclic enol ether 93 in MeOH affords the methyl ester 95 by hydrolysis of the ketene acetal 94 formed initially by regioselective attack of the methoxy group at the anomeric carbon, rather than the a-alkoxy ketone[35]. Similarly, the double bond of the furan part in khellin (96) is converted ino the ester 98 via the ketene acetal 97[l23],... [Pg.34]

In the presence of a double bond at a suitable position, the CO insertion is followed by alkene insertion. In the intramolecular reaction of 552, different products, 553 and 554, are obtained by the use of diflerent catalytic spe-cies[408,409]. Pd(dba)2 in the absence of Ph,P affords 554. PdCl2(Ph3P)3 affords the spiro p-keto ester 553. The carbonylation of o-methallylbenzyl chloride (555) produced the benzoannulated enol lactone 556 by CO, alkene. and CO insertions. In addition, the cyclobutanone derivative 558 was obtained as a byproduct via the cycloaddition of the ketene intermediate 557[4I0]. Another type of intramolecular enone formation is used for the formation of the heterocyclic compounds 559[4l I]. The carbonylation of the I-iodo-1,4-diene 560 produces the cyclopentenone 561 by CO. alkene. and CO insertions[409,4l2]. [Pg.204]

Silyl enol ethers are other ketone or aldehyde enolate equivalents and react with allyl carbonate to give allyl ketones or aldehydes 13,300. The transme-tallation of the 7r-allylpalladium methoxide, formed from allyl alkyl carbonate, with the silyl enol ether 464 forms the palladium enolate 465, which undergoes reductive elimination to afford the allyl ketone or aldehyde 466. For this reaction, neither fluoride anion nor a Lewis acid is necessary for the activation of silyl enol ethers. The reaction also proceed.s with metallic Pd supported on silica by a special method[301j. The ketene silyl acetal 467 derived from esters or lactones also reacts with allyl carbonates, affording allylated esters or lactones by using dppe as a ligand[302]... [Pg.352]

The Hydrate and Enol Form. In aqueous solutions, acetaldehyde exists in equihbrium with the acetaldehyde hydrate [4433-56-17, (CH2CH(0H)2). The degree of hydration can be computed from an equation derived by BeU and Clunie (31). Hydration, the mean heat of which is —21.34 kJ/mol (—89.29 kcal/mol), has been attributed to hyperconjugation (32). The enol form, vinyl alcohol [557-75-5] (CH2=CHOH) exists in equihbrium with acetaldehyde to the extent of approximately 1 molecule per 30,000. Acetaldehyde enol has been acetylated with ketene [463-51-4] to form vinyl acetate [108-05-4] (33). [Pg.50]

DimeriZa.tlon. A special case of the [2 + 2] cyclo additions is the dimerization of ketenes. Of the six possible isomeric stmctures, only the 1,3-cyclobutanediones and the 2-oxetanones (P-lactones) are usually formed. Ketene itself gives predominandy (80—90%) the lactone dimer, 4-methylene-2-oxetanone (3), called diketene [674-82-8], approximately 5% is converted to the symmetrical dimer, 1,3-cyclobutanedione [15506-53-3] (4) which undergoes enol-acetylation to so-called triketene [38425-52-4] (5) (44). [Pg.474]

Ketones with labile hydrogen atoms undergo enol acetylation on reaction with ketene. Strong acid catalysis is required. If acetone is used, isoptopenyl acetate [108-22-5] (10) is formed (82—85). Isopropenyl acetate is the starting material for the production of 2,4-pentanedione (acetylacetone) [123-54-6] (11). [Pg.477]

In 1959 Carboni and Lindsay first reported the cycloaddition reaction between 1,2,4,5-tetrazines and alkynes or alkenes (59JA4342) and this reaction type has become a useful synthetic approach to pyridazines. In general, the reaction proceeds between 1,2,4,5-tetrazines with strongly electrophilic substituents at positions 3 and 6 (alkoxycarbonyl, carboxamido, trifluoromethyl, aryl, heteroaryl, etc.) and a variety of alkenes and alkynes, enol ethers, ketene acetals, enol esters, enamines (78HC(33)1073) or even with aldehydes and ketones (79JOC629). With alkenes 1,4-dihydropyridazines (172) are first formed, which in most cases are not isolated but are oxidized further to pyridazines (173). These are obtained directly from alkynes which are, however, less reactive in these cycloaddition reactions. In general, the overall reaction which is presented in Scheme 96 is strongly... [Pg.50]

The reactions of ketenes or ketene equivalents with imines, discussed above, all involve the imine acting as nucleophile. Azetidin-2-ones can also be produced by nucleophilic attack of enolate anions derived from the acetic acid derivative on the electrophilic carbon of the imine followed by cyclization. The reaction of Reformatsky reagents, for example... [Pg.260]

Table 3. Reaction of (5)-3-Ben2yloxy-2-fIuoro-2-methylpropionaldehyde with Silyl Enol Ethers and Silyl Ketene Acetals [6]... Table 3. Reaction of (5)-3-Ben2yloxy-2-fIuoro-2-methylpropionaldehyde with Silyl Enol Ethers and Silyl Ketene Acetals [6]...
Methanesulfonyl chloride reacts with enamino ketones (104), (e.g., 151) to give good yields of the enol sulfones (e.g., 152). The analogy with ketene addition to form a-pyrones (Section IV.A) is obvious. [Pg.147]

The initial reaction between a ketene and an enamine is apparently a 1,2 cycloaddition to form an aminocyclobutanone adduct (58) (68-76a). This reaction probably occurs by way of an ionic zwitterion intermediate (75). The thermal stability of this adduct depends upon the nature of substituents Rj, R2, R3, and R. The enolic forms of 58 can exist only if Rj and/or R4 are hydrogens. If the enamine involved in the reaction is an aldehydic enamine with no 3 hydrogens and the ketene involved is di-substituted (i.e., R, R2, R3, and R4 are not hydrogens), then the cyclo-butanone adduct is thermally stable. For example, the reaction of dimethyl-ketene (61) with N,N-dimethylaminoisobutene (10) in isopropyl acetate... [Pg.225]

The proposed mechanism for the Conrad-Limpach reaction is shown below. Condensation of an aniline with a 3-keto-ester (i.e., ethyl acetoacetate 5) with loss of water provides enamino-ester 6. Enolization furnishes 10 which undergoes thermal cyclization, analogous to the Gould-Jacobs reaction, via 6n electrocyclization to yield intermediate 11. Compound 11 suffers loss of alcohol followed by tautomerization to give 4-hydroxy-2-methylquinoline 7. An alternative to the proposed formation of 10 is ejection of alcohol from 6 furnishing ketene 13, which then undergoes 671 electrocyclization to provide 12. [Pg.399]

The hetero Diels-Alder [4+2] cycloaddition (HDA reaction) is a very efficient methodology to perform pyrimidine-to-pyridine transformations. Normal (NHDA) and Inverse (IHDA) cycloaddition reactions, intramolecular as well as intermolecular, are reported, although the IHDA cycloadditions are more frequently observed. The NHDA reactions require an electron-rich heterocycle, which reacts with an electron-poor dienophile, while in the IHDA cycloadditions a n-electron-deficient heterocycle reacts with electron-rich dienophiles, such as 0,0- and 0,S-ketene acetals, S,S-ketene thioacetals, N,N-ketene acetals, enamines, enol ethers, ynamines, etc. [Pg.51]

Schemes 28 and 29 illustrate Curran s synthesis of ( )-hirsutene [( )-1]. Luche reduction58 of 2-methylcyclopentenone (137), followed by acetylation of the resulting allylic alcohol, furnishes allylic acetate 138. Although only one allylic acetate stereoisomer is illustrated in Scheme 28, compound 138 is, of course, produced in racemic form. By way of the powerful Ireland ester enolate Clai-sen rearrangement,59 compound 138 can be transformed to y,S-unsaturated tm-butyldimethylsilyl ester 140 via the silyl ketene acetal intermediate 139. In 140, the silyl ester function and the methyl-substituted ring double bond occupy neighboring regions of space, a circumstance that favors a phenylselenolactonization reac-... Schemes 28 and 29 illustrate Curran s synthesis of ( )-hirsutene [( )-1]. Luche reduction58 of 2-methylcyclopentenone (137), followed by acetylation of the resulting allylic alcohol, furnishes allylic acetate 138. Although only one allylic acetate stereoisomer is illustrated in Scheme 28, compound 138 is, of course, produced in racemic form. By way of the powerful Ireland ester enolate Clai-sen rearrangement,59 compound 138 can be transformed to y,S-unsaturated tm-butyldimethylsilyl ester 140 via the silyl ketene acetal intermediate 139. In 140, the silyl ester function and the methyl-substituted ring double bond occupy neighboring regions of space, a circumstance that favors a phenylselenolactonization reac-...
The Ireland-Claisen reaction of ( )-vinylsilanes has been applied to the stereoselective synthesis of syn- and c/nti-2-substituted 3-silyl alkcnoic acids. a R-2-Alkyl-3-silyl acids are prepared by rearrangement of ( )-silyl ketene acetals which are generated in situ from the kinetically formed (Z)-enolate of the corresponding propionate ester40. Chelation directs the stereochemistry of enolization of heteroelement-substituted acetates in such a way that the syn-diastereomers are invariably formed on rearrangement403. [Pg.345]

A few a/j/r -selective amide and imide enolates which arc able to provide high induced diastereo-selectivity have been uncovered very recently. The /V-propionylsultam 1 w hich opens a way to sryn-aldols as described in Section D.1.4.3.2.3.1. also allows the synthesis of r/nh-adducls. For this purpose. 1 is converted into the silyl-iV.O-ketene acetal 2 and subsequently added to aldehydes in a Mukaiyama-type aldol reaction106 to give awi-adducts 310<>f. [Pg.505]

The Lewis acid induced reaction of silyl enol ethers and silyl ketene (thio)acetals with 4-acetoxyazetidinones is often used for introduction of a carbon substituent in the 4-position of the jS-lactam ring. Numerous examples are known, both with and without substituents at nitrogen, some of which are shown. [Pg.831]

Considerable efforts have been devoted to the stereoselective introduction of a /(-methyl function in intermediates for the synthesis of 1 jS-methylcarbapenems. While the trimethylsilyl trifluoromethanesulfonate catalyzed reaction of a 4-acetoxyazetidinone derivative with ketene acetals shows no selectivity, ketene thioacetals lead to stereoselective formation of the a-methyl isomer108. The zirconium enolate, however, shows high /(-methyl selectivity. [Pg.832]

Excellent /(-methyl selectivity is observed in the zinc chloride mediated condensation with 0-silyl enol ethers of 2-pyridinylmethyl thiopropionates109. Supposedly, chelate formation of zinc(II) with the sulfur and the nitrogen atom of the pyridinylmethyl thioester is essential for the high /(-selectivity. The geometry of the ketene acetal also seems to have some influence. [Pg.833]

As an alternative to lithium enolates. silyl enolates or ketene acetals may be used in a complementary route to pentanedioates. The reaction requires Lewis acid catalysis, for example aluminum trifluoromethanesulfonate (modest diastereoselectivity with unsaturated esters)72 74 antimony(V) chloride/tin(II) trifluoromethanesulfonate (predominant formation of anti-adducts with the more reactive a,/5-unsaturated thioesters)75 montmorillonite clay (modest to good yields but poor diastereoselectivity with unsaturated esters)76 or high pressure77. [Pg.961]

High enantioselectivities may be reached using the kinetic controlled Michael addition of achiral tin enolates, prepared in situ, to a,/i-unsaturated carbonyl compounds catalyzed by a chiral amine. The presence of trimethylsilyl trifluoromethanesulfonate as an activator is required in these reactions236. Some typical results, using stoichiometric amounts of chiral amine and various enolates are given below. In the case of the l-(melhylthio)-l-[(trimethylsilyl)thio]ethene it is proposed that metal exchange between the tin(II) trifluoromethanesulfonate and the ketene acetal occurs prior to the 1,4-addition237,395. [Pg.985]


See other pages where Enolates ketene is mentioned: [Pg.353]    [Pg.389]    [Pg.261]    [Pg.302]    [Pg.419]    [Pg.93]    [Pg.276]    [Pg.773]    [Pg.776]    [Pg.777]    [Pg.793]    [Pg.64]    [Pg.759]    [Pg.51]    [Pg.60]    [Pg.61]    [Pg.62]    [Pg.63]    [Pg.64]   
See also in sourсe #XX -- [ Pg.241 ]




SEARCH



Ketene enolate

© 2024 chempedia.info