Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enolate compounds enol ethers

Preparation of o,/3-Unsaturated Carbonyl Compounds by the Reactions of Silyl Enol Ethers and Enol Acetates with Ally Carbonates... [Pg.363]

Catalytic hydrogenation of the 14—15 double bond from the face opposite to the C18 substituent yields (196). Compound (196) contains the natural steroid stereochemistry around the D-ring. A metal-ammonia reduction of (196) forms the most stable product (197) thermodynamically. When R is equal to methyl, this process comprises an efficient total synthesis of estradiol methyl ester. Birch reduction of the A-ring of (197) followed by acid hydrolysis of the resultant enol ether allows access into the 19-norsteroids (198) (204). [Pg.437]

These compounds typically react with electrophiles on carbon and in this respect they resemble enamines, enol ethers and enol thioethers. For example, both pyrrole and 1-pyrrolidinocyclohexene can be C-acetylated (Scheme 4). [Pg.43]

Formation o( oleltns by coupling or cross coupling of ketones, mediated by low valent titanium Also coupling ol enol ethers of 1,3-dicarbonyl compounds. [Pg.249]

The carbonyl group forms a number of other very stable derivatives. They are less used as protective groups because of the greater difficulty involved in their removal. Such derivatives include cyanohydrins, hydrazones, imines, oximes, and semicarbazones. Enol ethers are used to protect one carbonyl group in a 1,2- or 1,3-dicarbonyl compound. [Pg.177]

Although ethereal solutions of methyl lithium may be prepared by the reaction of lithium wire with either methyl iodide or methyl bromide in ether solution, the molar equivalent of lithium iodide or lithium bromide formed in these reactions remains in solution and forms, in part, a complex with the methyllithium. Certain of the ethereal solutions of methyl 1ithium currently marketed by several suppliers including Alfa Products, Morton/Thiokol, Inc., Aldrich Chemical Company, and Lithium Corporation of America, Inc., have been prepared from methyl bromide and contain a full molar equivalent of lithium bromide. In several applications such as the use of methyllithium to prepare lithium dimethyl cuprate or the use of methyllithium in 1,2-dimethyoxyethane to prepare lithium enolates from enol acetates or triraethyl silyl enol ethers, the presence of this lithium salt interferes with the titration and use of methyllithium. There is also evidence which indicates that the stereochemistry observed during addition of methyllithium to carbonyl compounds may be influenced significantly by the presence of a lithium salt in the reaction solution. For these reasons it is often desirable to have ethereal solutions... [Pg.106]

In the chemical shift range for alkenes and aromatic and heteroaromatic compounds enol ether fragments (furan, pyrone, isoflavone, 195-200 Hz) ... [Pg.27]

The procedure described illustrates a general method for the preparation of o ,j3-unsaturated aldehydes and ketones from the enol ethers of 3-dicarbonyl compounds. [Pg.16]

The application of the Birch reduction to ethers of estradiol by A. J. Birch opened up the area of 19-norsteroids to intensive research. The major Birch reduction product is an enol ether which affords either a 3-keto-A -or a 3-keto-A -19-norsteroid depending upon the hydrolysis conditions. Various 19-norsteroids have been found to have useful clinical activity compounds (30), (31), and (32) are oral contraceptive agents and compound (33) has been used as an oral anabolic agent. Several of these compounds were prepared on an industrial scale for a number of years by the Birch reduction of estradiol derivatives. [Pg.11]

Dimethyl ketals and enol ethers are stable to the conditions of oxime formation (hydroxylamine acetate or hydroxylamine hydrochloride-pyridine). Thioketals and hemithioketals are cleaved to the parent ketones by cadmium carbonate and mercuric chloride. Desulfurization of thioketals with Raney nickel leads to the corresponding methylene compounds, while thioenol ethers give the corresponding olefin. In contrast, desulfurization of hemithioketals regenerates the parent ketone. ... [Pg.385]

Another route to 5a compounds (57) proceeds from the dienol ether (58) by selective catalytic hydrogenation of the A -double bond with concomitant shift of the 3,4-double bond to the 2,3-position. If the hydrogenation is carried out in the presence of traces of base, double bond migration is suppressed and the difficultly accessible A -enol ethers of 5a-series (59) are thus obtained. [Pg.390]

Cross-conjugated dienones are quite inert to nucleophilic reactions at C-3, and the susceptibility of these systems to dienone-phenol rearrangement precludes the use of strong acid conditions. In spite of previous statements, A " -3-ketones do not form ketals, thioketals or enamines, and therefore no convenient protecting groups are available for this chromophore. Enol ethers are not formed by the orthoformate procedure, but preparation of A -trienol ethers from A -3-ketones has been claimed. Another route to A -trien-3-ol ethers involves conjugate addition of alcohol, enol etherification and then alcohol removal from la-alkoxy compounds. [Pg.394]

The tertiary 17) -hydroxyl group does not form bulky enol ethers and mixed acetals. However, tetrahydropyranyl ethers are obtained from 17a-ethynyl-17]3-hydroxy compounds. Tetrahydropyranyl ethers have also been prepared from tertiary 17a-hydroxyl groups. ... [Pg.404]

The reaction of tnfluoromethyl-substituted A -acyl umnes toward nucleophiles in many aspects parallels that of the parent polyfluoro ketones Heteronucleophiles and carbon nucleophiles, such as enarmnes [37, 38], enol ethers [38, 39, 40], hydrogen cyanide [34], tnmethylsilylcarbomlnle [2,47], alkynes [42], electron-nch heterocycles [43], 1,3-dicarbonyl compounds [44], organolithium compounds [45, 46, 47, 48], and Gngnard compounds [49,50], readily undergo hydroxyalkylation with hexafluoroace-tone and amidoalkylation with acyl imines denved from hexafluoroacetone... [Pg.842]

For some condensations with silylated substrates as starting compounds, trimethylsilyl inflate can be used as a catalyst [103, 104, 105] Atypical example of such a reaction is the aldol type condensation of silyl enol ethers and acetals catalyzed by 1-5 mol% of trimethylsilyl inflate [103] (equation 53)... [Pg.961]

FITS reagents), has undergone considerable development recently [141,142,143, 144, 14S. These compounds, available fromperfluoroalkyhodides (equation 76), are very effective electrophilicperfluoroalkylating agents They react with carban-lons, aromatic compounds, alkenes, alkynes, silyl enol ethers, and other nucleophiles under mild conditions to introduce the perfluoroalkyl moiety mto organic substrates (equation 77) (see the section on alkylation, page 446). [Pg.969]

The 1,3-dicarbonyl components can be replaced by an enol ether, which can be prepared by Claisen condensation from an ortho ester and a reactive methylene compound. ... [Pg.537]

Two different alkenes can be brought to reaction to give a [2 -I- 2] cycloaddition product. If one of the reactants is an o, /3-unsaturated ketone 11, this will be easier to bring to an excited state than an ordinary alkene or an enol ether e.g. 12. Consequently the excited carbonyl compound reacts with the ground state enol ether. By a competing reaction pathway, the Patemo-Buchi reaction of the 0, /3-unsaturated ketone may lead to formation of an oxetane, which however shall not be taken into account here ... [Pg.78]

A somewhat different approach is used to prepare the compounds containing the amine at the 4 position. Condensation of the amidine from acetonitrile (138) with the enol ether from formylacetonitrile (137) leads to the requisite pyrimidine (139). [Pg.128]

Oppenauer oxidation of the enol ether (34) affords the corresponding 17 ketone (37) (the enol ether is stable to the basic oxidation conditions). This ketone affords the corresponding 17a-ethynyl compound on reaction with metal acetylides. Hydrolysis of the enol ether under mild conditions leads directly... [Pg.164]


See other pages where Enolate compounds enol ethers is mentioned: [Pg.209]    [Pg.104]    [Pg.363]    [Pg.529]    [Pg.218]    [Pg.167]    [Pg.434]    [Pg.439]    [Pg.85]    [Pg.3]    [Pg.99]    [Pg.232]    [Pg.10]    [Pg.24]    [Pg.47]    [Pg.246]    [Pg.282]    [Pg.475]    [Pg.182]   


SEARCH



1.4- Dicarbonyl compounds from silyl enol ethers

Carbonyl compounds enol ether preparation

Enol ethers from 1,3-dicarbonyl compounds

Enol ethers reaction with carbonyl compounds

Enolate compound

Enolates compounds

Ethers compounds

Silver compounds Silyl enol ethers

Silyl enol ethers compounds

Silyl enol ethers from carbonyl compounds

Silyl enol ethers reactions with carbonyl compounds

Silyl enol ethers with carbonyl compounds

Tin, trialkylaminoreaction with carbonyl compounds preparation of enol stannyl ethers

Unsaturated carbonyl compounds silyl enol ethers

© 2024 chempedia.info