Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol ethers from unsaturated acetals

Silyl enol ethers and ketene acetals derived from ketones, aldehydes, esters and lactones are converted into the corresponding o/i-unsaturated derivatives on treatment with allyl carbonates in high yields in the catalytic presence of the palladium-bis(diphenylphosphino)ethane complex (32). A phosphinc-free catalyst gives higher selectivity in certain cases, such as those involving ketene acetals. Nitrile solvents, such as acetonitrile, are essential for success. [Pg.67]

The reaction of potassium dienoxy borates with A-fluorobis(phenylsulfonyl)amine (la) gives y-fluoro enones in good yield. The potassium dienoxy borates are prepared by treating potassium enolates derived from unsaturated ketones with 2-phenyl-1,3,2-benzodioxaborole. This methodology offers a convenient alternative to the traditional fluorination of dienol acetates, ethers, or enamines.145 An example is given by the formation of 13.145... [Pg.482]

Review articles of synthetic importance have featured eliminations involving carbon-halogen bonds and leading to highly strained lings,81 elimination and addition-elimination reactions,82 enol ether formation from unsaturated acetals,83 and the Wittig reaction and related methods.84... [Pg.383]

C(2)-C(3) fused polycyclic cephalosporins have received considerable attention as new candidates for /3-lactam antibiotics. An access to tricyclic cephalosporins based on metal-promoted alkenylation of 3-trifloxy-A3-cephem and subsequent Diels-Alder reaction has been published <1996TL5967>. Alternatively, the reaction of a cephalosporin triflate with silyl enol ethers and silylketene acetals has been described to afford tri- and tetracyclic cephalosporins <1996TL7549>. A related process is the formation of fused polycyclic cephalosporins 27 and 28 bearing a wide range of functionalities from the reaction of cephalosporin triflates 26 with unsaturated compounds (alkenes and alkynes) and a base (Scheme 5) <1997JOC4998>. These studies have suggested that the reaction proceeds via the intermediacy of a six-membered cyclic allene which undergoes concerted nZs + K2a cycloaddition with alkenes and acetylenes. [Pg.123]

Formation of Cyclopentanols. Pyrolysis of unsaturated aldehyde (278) at 220 "C leads to ene adduct (279), which reacts further to give a mixture of enol ether (280) and acetal (281). Hydrolysis of the mixture with hydrochloric acid gives hemiacetal (282) in 44% yield from (278). [Pg.558]

This reaction was first reported by Mukaiyama et al. in 1974. It is a Lewis acid-catalyzed Michael conjugate addition of silyl enol ether to o ,/3-unsaturated compounds. Therefore, it is generally referred to as the Mukaiyama-Michael reaction. Because this reaction is essentially a conjugate addition, it is also known as the Mukaiyama-Michael addition or Mukaiyama-Michael conjugate addition. This reaction is a mechanistic complement for the base-catalyzed Michael addition, j and often occurs at much milder conditions and affords superior regioselectivity. s Besides silyl enol ether, silyl ketene acetals are also suitable nucleophiles in this reaction.For the hindered ketene silyl acetals, the Lewis acid actually mediates the electron transfer from the nucleophiles to o ,/3-unsaturated carbonyl molecules.On the other hand, the Q ,j8-unsaturated compounds, such as 3-crotonoyl-2-oxazolidinone, alkylidene malonates, and a-acyl-a,/3-unsaturated phosphonates are often applied as the Michael acceptors. It has been found that the enantioselectivity is very sensitive to the reactant structures —for example, Q -acyl-Q ,j8-unsaturated phosphonates especially prefers the unique syn- vs anft-diastereoselectivity in this reaction. In addition,... [Pg.1996]

Another preparative method for the enone 554 is the reaction of the enol acetate 553 with allyl methyl carbonate using a bimetallic catalyst of Pd and Tin methoxide[354,358]. The enone formation is competitive with the allylation reaction (see Section 2.4.1). MeCN as a solvent and a low Pd to ligand ratio favor enone formation. Two regioisomeric steroidal dienones, 558 and 559, are prepared regioselectively from the respective dienol acetates 556 and 557 formed from the steroidal a, /3-unsaturated ketone 555. Enone formation from both silyl enol ethers and enol acetates proceeds via 7r-allylpalladium enolates as common intermediates. [Pg.364]

Adapted from Sasidharan and Kumar (257). Reaction conditions catalyst, 150 mg methyl trimethylsilyl dimethylketene acetal (silyl enol ether), 10 mmol a,(3-unsaturated carbonyl compounds, 10 mmol dry THF, 10 mmol reaction temperature, 333 K reaction time, 14 h. Structures of a, p-unsaturated carbonyl compounds (2a-2g) and products (3a-3g) are shown in Scheme 24. [Pg.139]

The reactions proceeded efficiently under mild conditions in short time. The silyl enol ethers reacted with the activated acetals or aldehydes at -78 °C to give predominant erythro- or threo-products [136, 137] respectively. In the same manner, the aldol reaction of thioacetals, catalyzed by an equimolar amount of catalyst, resulted in <-ketosulfides [139] with high diastereoselectivity. In the course of this investigation, the interaction of silyl enol ethers with a,]3-unsaturated ketones, promoted by the trityl perchlorate, was shown to proceed regioselec-tively through 1,2- [141] or 1,4-addition [138]. The application of the trityl salt as a Lewis acid catalyst was spread to the synthesis of ]3-aminoesters [142] from the ketene silyl acetals and imines resulting in high stereoselective outcome. [Pg.373]

Although simple ketones and esters can not be allylated by Pd catalysts, they are allylated with allyl carbonates via their enol ethers of Si and Sn. In the allylation of the silyl enol ether 202 with allyl carbonate 200, transmetallation of 202 with the n-allylpalladium methoxide 201, generated from allyl methyl carbonate (200), takes place to generate the Pd enolates 203 and 204. Depending on the reaction conditions, allyl ketone 205 is formed by the reductive elimination of 203 [100]. When the ratio of Pd Ph3P is small, the a,/i-unsaturated ketone 206 is obtained by -elimination [101]. For example, the silyl enol ether 208 of aldehyde 207 is allylated with allyl carbonate (200) to give a-allylaldehyde 210 via 209. The a-allyl carboxylate 213 is obtained by allylation of ester 211 with allyl carbonate (200), after conversion of ester 211 to the ketene silyl acetal 212 [102], As the silyl group is trapped in these... [Pg.130]

Fig. 12.23. A Mukaiyama aldol addition (-> C) and its reaction mechanism (bottom row). As shown here, this method can be exploited to obtain the poly-unsaturated aldehyde D. Under the conditions of the first reaction step the primary product C—which, like the substrate A, is an acetal—does not compete with A for still unconsumed enol ether B. This is due to the fact that the methoxy substituent in the oxocarbenium ion G, which would have to be regenerated from Cin order to undergo further reaction with B, destabilizes G because of its electron-withdrawing inductive (-1) effect. Fig. 12.23. A Mukaiyama aldol addition (-> C) and its reaction mechanism (bottom row). As shown here, this method can be exploited to obtain the poly-unsaturated aldehyde D. Under the conditions of the first reaction step the primary product C—which, like the substrate A, is an acetal—does not compete with A for still unconsumed enol ether B. This is due to the fact that the methoxy substituent in the oxocarbenium ion G, which would have to be regenerated from Cin order to undergo further reaction with B, destabilizes G because of its electron-withdrawing inductive (-1) effect.
Various substrates have been successfully used in the present LASC-catalysed aldol reaction. Aromatic as well as aliphatic, a, 3-unsaturated and heterocyclic aldehydes worked well. As for silicon enolates, silyl enol ethers derived from ketones as well as ketene silyl acetals derived from thioesters and esters reacted well to give the corresponding adducts in high yields. It is noted that highly water-sensitive ketene silyl acetals reacted smoothly in water under these conditions. [Pg.275]

As with other intramolecular ene reactions, this reaction is best suited to the preparation of cyclopentanes, but can also be used for the preparation of cyclohexanes. The reaction cannot be used for the formation of cyclopropanes or cyclobutanes since the unsaturated carbonyl compound is more stable than the ene adduct. 8,e-Unsaturated ketones (167) do not give cyclobutanes (171) by enolization to give (170) followed by a type I reaction but instead give cyclohexanones (169) by enolization to give (168) followed by a type II reaction. Alkynes can replace alkenes as the enophile. Enols can be prepared from pyrolysis of enol esters, enol ethers and acetals and from -keto esters and 1,3-dicaibonyl compounds. Tlie reaction is well suited to the preparation of fused or bridged bicyclic and spirocyclic compounds. Tandem ene reactions in which two rings are formed in one pot from dienones have also been described. The examples discussed below 2-i63 restricted to those published since Conia and Le Perchec s 1975... [Pg.22]

Michael reactions of silyl enolates or ketene silyl acetals with a, -unsaturated carbonyl compounds are among the most important carbon-carbon bond-forming processes in organic synthesis. Sc(OTf)3 was found to be effective [4], and the reactions proceeded smoothly in the presence of a catalytic amount of Sc(OTf)3, under extremely mild conditions, to give the corresponding 1,5-dicarbonyl compounds in high yields after acid work-up (Eq. 2). Silyl enolates derived from ketones, thioesters, and esters were applicable, and no 1,2-addition products were obtained. The products could, furthermore, be isolated as synthetically valuable silyl enol ethers (I) when acid-free work-up was performed. The catalyst could be recovered almost quantitatively and could be re-used. [Pg.885]


See other pages where Enol ethers from unsaturated acetals is mentioned: [Pg.104]    [Pg.390]    [Pg.618]    [Pg.1169]    [Pg.269]    [Pg.269]    [Pg.223]    [Pg.457]    [Pg.59]    [Pg.223]    [Pg.283]    [Pg.209]    [Pg.366]    [Pg.132]    [Pg.26]    [Pg.457]    [Pg.283]    [Pg.144]    [Pg.1353]    [Pg.388]    [Pg.293]    [Pg.577]    [Pg.430]    [Pg.387]   
See also in sourсe #XX -- [ Pg.276 ]




SEARCH



Acetal from

Acetals ether

Acetate enolates

Acetic ether

Enol acetals

Enol acetates

Enol ethers from acetals

Enolates from enol acetates

Ethers from acetals

From enol ethers

From ethers

© 2024 chempedia.info