Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol esters hydrolysis

To get conjugate addition we might use a -ketoester 18 or an enamine for the enolate and we might carry out the reaction using the Mannich salt 19 so that the elimination will be caused by the same base that makes the enolate. Ester hydrolysis and decarboxylation of 20 would give 1. [Pg.152]

Hydrolysis of Enol Esters. Enzyme-mediated enantioface-differentiating hydrolysis of enol esters is an original method for generating optically active a-substituted ketones (84—86). If the protonation of a double bond occurs from one side with the simultaneous elimination of the acyl group (Fig. 3), then the optically active ketone should be produced. Indeed, the incubation of l-acetoxy-2-methylcyclohexene [1196-73-2] (68) with Pichia... [Pg.340]

In their original communication on the alkylation and acylation of enamines, Stork et al. (3) had reported that the pyrrolidine enamine of cyclohexanone underwent monoacylation with acid chlorides. For example, the acylation with benzoyl chloride led to monobenzoylcyclohexanone. However, Hunig and Lendle (33) found that treatment of the morpholine enamine of cyclopentanone with 2 moles of propionyl chloride followed by acid hydrolysis gave the enol ester (56), which was proposed to have arisen from the intermediate (55). [Pg.20]

The acylation of enamino ketones can take place on oxygen or on carbon. While reaction at nitrogen is a possibility, the N-acylated products are themselves acylating agents, and further reaction normally takes place. The first reported acylation of enamino ketones (72) was that of 129, prepared by acylation of the enamine (113), which was shown to have undergone O acylation because on mild hydrolysis the enol ester (130) could be isolated. A similar reaction took place with other aliphatic acid chlorides (80) and with dibasic acid chlorides [e.g., with succinyl chloride to give 118 above]. [Pg.142]

Diels-Alder reaction, 493 El reaction, 391-392 ElcB reaction, 393 E2 reaction, 386 Edman degradation, 1032 electrophilic addition reaction, 147-148. 188-189 electrophilic aromatic substitution, 548-549 enamine formation, 713 enol formation, 843-844 ester hydrolysis, 809-811 ester reduction, 812 FAD reactions. 1134-1135 fat catabolism, 1133-1136 fat hydrolysis, 1130-1132 Fischer esterification reaction, 796 Friedel-Crafts acylation reaction, 557-558... [Pg.1305]

The acid-catalyzed hydrolysis of enol esters (RCOOCR =CR) can take place either by the normal Aac2 mechanism or by a mechanism involving initial protonation on the double-bond carbon, similar to the mechanism for the hydrolysis of enol ethers given in 10-6, ° depending on reaction conditions. In either case, the products are the carboxylic acid RCOOH and the aldehyde or ketone R2" CHCOR. ... [Pg.474]

Steric hindrances may also be the reason why quaternary salts of 8-alkylnarcotoline (130) were transformed during Hofmann degradation to analogous keto acids (131) (111,112) and not to the enol lactones (Scheme 24). In some cases (5,87) the keto acids and their esters have been synthesized from the corresponding enol lactones by hydration (Section III,A,2). Nornarceine (107) was prepared from JV-benzyl-(—)-a-narcotinium bromide (139, X = Br) by Hofmann degradation followed by N-debenzylation and ester hydrolysis (109). [Pg.270]

F. l Catalysis of ester hydrolysis 264, F.2 Catalysis of enolization 265 G Intramolecular general base catalysis by nitrogen 266... [Pg.184]

Ethyl 3-oxoalkanoates when not commercially available can be prepared by the acylation of tert-butyl ethyl malonate with an appropriate acid chloride by way of the magnesium enolate derivative. Hydrolysis and decarboxylation in acid solution yields the desired 3-oxo esters [59]. 3-Keto esters can also be prepared in excellent yields either from 2-alkanone by condensation with ethyl chloroformate by means of lithium diisopropylamide (LDA) [60] or from ethyl hydrogen malonate and alkanoyl chloride usingbutyllithium [61]. Alternatively P-keto esters have also been prepared by the alcoholysis of 5-acylated Mel-drum s acid (2,2-dimethyl-l,3-dioxane-4,6-dione). The latter are prepared in almost quantitative yield by the condensation of Meldrum s acid either with an appropriate fatty acid in the presence of DCCI and DMAP [62] or with an acid chloride in the presence of pyridine [62] (Scheme 7). [Pg.306]

Enol esters are distinct from other esters not because of a particular stability or lability toward hydrolases, but due to their hydrolysis releasing a ghost alcohol (an enol), which may immediately tautomerize to the corresponding aldehyde or ketone. A well-studied example is that of vinyl acetate (CH3-C0-0-CH=CH2), a xenobiotic of great industrial importance that, upon hydrolysis, liberates acetic acid (CH3-CO-OH) and acetaldehyde (CH3-CHO), the stable tautomer of vinyl alcohol [25], The results of two studies are compiled in Table 7.1, and demonstrate that vinyl acetate is a very good substrate of carboxylesterase (EC 3.1.1.1) but not of acetylcholinesterase (EC 3.1.1.7) or cholinesterase (EC 3.1.1.8). The presence of carboxylesterase in rat plasma but not in human plasma explains the difference between these two preparations, although the different experimental conditions in the two studies make further interpretation difficult. [Pg.391]

J. P. Patel, A. J. Repta, Enol Esters as Potential Prodrugs. I. Stability and Enzyme-Mediated Hydrolysis of a-Acetoxystyrene , lnt. J. Pharm. 1980, J, 329-333. [Pg.427]

Camell, A.J., Barkely, J. and Singh, A., Desymmetrisation of prochiral ketones by catal3ftic enantioselective hydrolysis of their enol esters using enzymes. Tetrahedron Lett., 1997, 38, 7781-7784 Allan, G.R., Carnell, A.J. and Kroutil, W., One-pot deracemisation of an enol acetate derived from a prochiral cyclohexanone. Tetrahedron Lett., 2001, 42, 5959-5962. [Pg.76]

Camell, A.J., Barkley, J. and Singh, A., Desymmetrisation of prochiral ketones by catalytic enantioselective hydrolysis of their enol esters using enzymes. Tetrahedron Lett., 1997,38,7781. [Pg.128]

Diethyl malonate can be converted into its enolate anion, which may then be used to participate in an Sn2 reaction with an alkyl halide (see Section 10.7). Ester hydrolysis and mild heating leads to production... [Pg.390]

The mechanistic steps can be deduced by inspection of structures and conditions. Enolate anion formation from diethyl malonate under basic conditions is indicated, and that this must attack the epoxide in an Sn2 reaction is implicated by the addition of the malonate moiety and disappearance of the epoxide. The subsequent ring formation follows logically from the addition anion, and is analogous to base hydrolysis of an ester. Ester hydrolysis followed by decarboxylation of the P-keto acid is then implicated by the acidic conditions and structural relationships. [Pg.665]

Hydrolysis of gem-dihalides 0-4 Hydrolysis of enol esters of inorganic acids... [Pg.1270]

Hydrolysis of enol esters 0-83 Reduction of acyl halides 0-84 Reduction of carboxylic acids, esters, or anhydrides 0-85 Reduction of amides 0-95 Alkylation and hydrolysis of imines, alkylation of aldehydes 0-97 Alkylation and hydrolysis of dithi-anes... [Pg.1270]

Hydrolysis of enol esters 0-76 Reduction of halo ketones 0-78 Reduction of hydroxy ketones 0-82 Reduction of diazo ketones or nitro ketones... [Pg.1291]

Substituted, 2,3-disubstituted, and 2,3-annulated thiophenes can be prepared by reactions of ketone enolates with carbonodithioic acid O-ethyl 5-(2-oxoethyl)ester. Hydrolysis of the resulting aldols, intramolecular addition of thiol group to the carbonyl group, and elimination of two molecules of water lead to the thiophenes (116) (Scheme 38) (92HCA907). [Pg.531]

Hydrolysis of F.not Esters. En/yme-mcdiaied enaniiofacc-diffcrentia-ting hydrolysis ol enol esters is an original method for generating optically active cr-suhsiitutcd ketones. [Pg.575]


See other pages where Enol esters hydrolysis is mentioned: [Pg.350]    [Pg.583]    [Pg.350]    [Pg.583]    [Pg.341]    [Pg.181]    [Pg.1644]    [Pg.1644]    [Pg.1678]    [Pg.1678]    [Pg.42]    [Pg.228]    [Pg.353]    [Pg.48]    [Pg.391]    [Pg.1529]    [Pg.1291]    [Pg.100]    [Pg.101]    [Pg.433]    [Pg.363]   
See also in sourсe #XX -- [ Pg.474 ]

See also in sourсe #XX -- [ Pg.382 ]




SEARCH



Enol esters

Enol hydrolysis

Enolates enol esters

Ester enolate

Esters enolates

Esters enolization

Hydrolysis of enol esters

© 2024 chempedia.info