Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol esters formation

Enol ester formation from crotonaldehyde gives the expected / -selectivity 66. Now the silyl enol ether is formed from this ester, also with the expected double bond geometry. The product 67 has three alkenes each is conjugated with at least one oxygen atom. [Pg.52]

The construction of the pyranooxepin system shown in equation (52) proceeds by way of a dibenzox-epinone acetic acid, followed by intramolecular enol ester formation.67 The regioselective cyclization of 4-(2-naphthyloxy)butanoyl chloride proceeds as expected (equation 53) using tin(lV) chloride as the catalyst, but a mixture of products was obtained when the related carboxylic acid was treated with poly-phosphoric acid.68 The preparation of a thieno[fr]suberanone in 40% yield has been achieved by the interaction of tin(IV) chloride with 5-(2-thienyl)valeryl chloride.69 Once again, the expected increase in yield is obtained when cyclization occurs to the 2-position in thiophene. The product shown in equation (54) was isolated in 81 % yield.70 Other intramolecular reactions involving thiophenes have been reported.71... [Pg.765]

Photochemical oxacarbene formation, 307 Photochemical rearrangements of cross-conjugated cyclohexadienones, 330 Photochemical rearrangements of enol esters and enol lactones, 339... [Pg.463]

Coumarin formation proceeds via an intramolecular attack by enol ester 9 on the ketone to give 10. Dehydration of 10 then affords coumarin 11. It has been observed that coumarins are favored when higher order homologs of acetic anhydride and their corresponding salts such as propionic anhydride/sodium propionate and butyric anhydride/ sodium butyrate are used. [Pg.523]

The three-step sequence of 0) enolate ion formation, (2) alkylation, and (3) hydrolvsis/decarboxylation is applicable to all /Tketo esters with acidic a hydrogens, not just to acetoacetic ester itself. For example, cyclic /3-keto esters such as ethyl 2-oxocycIohexanecarboxylate can be alkylated and decarboxy-lated to give 2-substituted cyclohexanones. [Pg.860]

Enolic esters are especially good for this purpose, because the equilibrium is shifted by formation of the ketone. [Pg.491]

See Section 362 (Ester-Alkene) for the formation of enol esters and Section 367 (Ether-Alkenes) for the formation of enol ethers. Many of the methods in Section 60A (Protection of Aldehydes) are also applicable to ketones. [Pg.207]

The enolates of ketones can be acylated by esters and other acylating agents. The products of these reactions are [Tdicarbonyl compounds, which are rather acidic and can be alkylated by the procedures described in Section 1.2. Reaction of ketone enolates with formate esters gives a P-ketoaldehyde. As these compounds exist in the enol form, they are referred to as hydroxymethylene derivatives. Entries 1 and 2 in Scheme 2.16 are examples. Product formation is under thermodynamic control so the structure of the product can be predicted on the basis of the stability of the various possible product anions. [Pg.155]

Figure 3.11 Woodward s reagent K undergoes a rearrangement in alkaline solution to form a reactive ketoket-enimine. This active species can react with a carboxylate group to create another active group, an enol ester derivative. In the presence of amine nucleophiles, amide bond formation takes place. Figure 3.11 Woodward s reagent K undergoes a rearrangement in alkaline solution to form a reactive ketoket-enimine. This active species can react with a carboxylate group to create another active group, an enol ester derivative. In the presence of amine nucleophiles, amide bond formation takes place.
The preferential -configuration of the enol esters, derived from p-dicarbonyl compounds under phase-transfer conditions, contrasts with the formation of the Z-enol esters when the reaction is carried out by classical procedures using alkali metal alkoxides. In the latter case, the U form of the intermediate enolate anion is stabilized by chelation with the alkali metal cation, thereby promoting the exclusive formation of the Z-enol ester (9) (Scheme 3.5), whereas the formation of the ion-pair with the quaternary ammonium cation allows the carbanion to adopt the thermodynamically more stable sickle or W forms, (7) and (8), which lead to the E-enol esters (10) [54],... [Pg.96]

Perlmutter used an oxymercuration/demercuration of a y-hydroxy alkene as the key transformation in an enantioselective synthesis of the C(8 ) epimeric smaller fragment of lb (and many more pamamycin homologs cf. Fig. 1) [36]. Preparation of substrate 164 for the crucial cyclization event commenced with silylation and reduction of hydroxy ester 158 (85-89% ee) [37] to give aldehyde 159, which was converted to alkenal 162 by (Z)-selective olefination with ylide 160 (dr=89 l 1) and another diisobutylaluminum hydride reduction (Scheme 22). An Oppolzer aldol reaction with boron enolate 163 then provided 164 as the major product. Upon successive treatment of 164 with mercury(II) acetate and sodium chloride, organomercurial compound 165 and a second minor diastereomer (dr=6 l) were formed, which could be easily separated. Reductive demercuration, hydrolytic cleavage of the chiral auxiliary, methyl ester formation, and desilylation eventually led to 166, the C(8 ) epimer of the... [Pg.233]

Again, the exclusive formation of six-membered rings indicates that the cyclization takes place by the electrophilic attack of a cationic center, generated from the enol ester moiety to the olefinic double bond. The eventually conceivable oxidation of the terminal double bond seems to be negligible under the reaction conditions since the halve-wave oxidation potentials E1/2 of enol acetates are + 1.44 to - - 2.09 V vs. SCE in acetonitrile while those of 1-alkenes are + 2.70 to -1- 2.90 V vs. Ag/0.01 N AgC104 in acetonitrile and the cyclization reactions are carried out at anodic potentials of mainly 1.8 to 2.0 V vs. SCE. [Pg.82]

An enolate anion generated from a carboxylic acid derivative may be used in the same sorts of nucleophilic reactions that we have seen with aldehyde and ketone systems. It should be noted, however, that the base used to generate the enolate anion must be chosen carefully. If sodium hydroxide were used, then hydrolysis of the carboxylic derivative to the acid (see Section 7.9.2) would compete with enolate anion formation. However, the problem is avoided by using the same base, e.g. ethoxide, as is present in the ester... [Pg.374]

The racemization process involves removal of the a-hydrogen to form the enolate anion, which is favoured by both the enolate anion resonance plus additional conjugation with the aromatic ring. Since the a-protons in esters are not especially acidic, the additional conjugation is an important contributor to enolate anion formation. The proton may then be restored from either side of the planar system, giving a racemic product. [Pg.375]

In this case, we formulate the Claisen reaction between two ester molecules as enolate anion formation, nucleophilic attack, then loss of the leaving group. Now reverse it. Use hydroxide as the nucleophile to attack the ketone carbonyl, then expel the enolate anion as the leaving group. All that remains is protonation of the enolate anion, and base hydrolysis of its ester function. [Pg.659]

The mechanistic steps can be deduced by inspection of structures and conditions. Enolate anion formation from diethyl malonate under basic conditions is indicated, and that this must attack the epoxide in an Sn2 reaction is implicated by the addition of the malonate moiety and disappearance of the epoxide. The subsequent ring formation follows logically from the addition anion, and is analogous to base hydrolysis of an ester. Ester hydrolysis followed by decarboxylation of the P-keto acid is then implicated by the acidic conditions and structural relationships. [Pg.665]


See other pages where Enol esters formation is mentioned: [Pg.354]    [Pg.765]    [Pg.182]    [Pg.200]    [Pg.316]    [Pg.765]    [Pg.354]    [Pg.765]    [Pg.182]    [Pg.200]    [Pg.316]    [Pg.765]    [Pg.183]    [Pg.391]    [Pg.57]    [Pg.391]    [Pg.339]    [Pg.419]    [Pg.181]    [Pg.427]    [Pg.150]    [Pg.228]    [Pg.122]    [Pg.328]    [Pg.58]    [Pg.94]    [Pg.26]    [Pg.665]   
See also in sourсe #XX -- [ Pg.490 ]

See also in sourсe #XX -- [ Pg.490 ]

See also in sourсe #XX -- [ Pg.98 , Pg.490 ]




SEARCH



Acetyl chloride use in enol ester formation

Enol esters

Enol formate

Enol formation

Enolate formation

Enolates enol esters

Enolates formation

Ester Lithium enolate formation

Ester enolate

Ester enolates formation

Ester enolates formation

Ester formation

Esters Formates

Esters enolates

Esters enolization

Formate esters

Tin ester enolates formation

© 2024 chempedia.info