Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Energy levels concentration

There is one special class of reaction systems in which a simplification occurs. If collisional energy redistribution of some reactant occurs by collisions with an excess of heat bath atoms or molecules that are considered kinetically structureless, and if fiirthennore the reaction is either unimolecular or occurs again with a reaction partner M having an excess concentration, dien one will have generalized first-order kinetics for populations Pj of the energy levels of the reactant, i.e. with... [Pg.1050]

The equihbtium lever relation, np = can be regarded from a chemical kinetics perspective as the result of a balance between the generation and recombination of electrons and holes (21). In extrinsic semiconductors recombination is assisted by chemical defects, such as transition metals, which introduce new energy levels in the energy gap. The recombination rate in extrinsic semiconductors is limited by the lifetime of minority carriers which, according to the equihbtium lever relation, have much lower concentrations than majority carriers. Thus, for a -type semiconductor where electrons are the minority carrier, the recombination rate is /S n/z. An = n — is the increase of the electron concentration over its value in thermal equihbtium, and... [Pg.346]

The triplet-state energy level of oxytetracycline, the excitation maximum (412 nm), lifetimes of Eu-OxTc (58 p.s) and Eu-OxTc-Cit (158 p.s), were determined. A 25-fold luminescence enhancement at 615 nm occurs upon addition of citrate within a short 5-min incubation time at neutral pH. It s accompanied by a threefold increase of the luminescence decay time. The optimal conditions for determination of OxTc are equal concentrations of Eu(III) and citrate (C = T lO mol-E ), pH 7.2. Eor determination of citrate, the optimal conditions concentrations of Eu(HI) and OxTc are 1 0,5 (Cg = MO Huol-E-i, = 5-10-HuohE-i) at pH 7.2. [Pg.391]

Fourier transform infrared (FTIR) analyzers can be used for industrial applications and m situ measurements in addition to conventional laboratory use. Industrial instruments are transportable, rugged and relatively simple to calibrate and operate. They are capable of analyzing many gas components and determining their concentrations, practically continuously. FTIR analyzers are based on the spectra characterization of infrared light absorbed by transitions in vibrational and rotational energy levels of heteroatomic molecules. [Pg.1303]

The bonding in molecules containing more than two atoms can also be described in terms of molecular orbitals. We will not attempt to do this the energy level structure is considerably more complex than the one we considered. However, one point is worth mentioning. In polyatomic species, a pi molecular orbital can be spread over die entire molecule rather than being concentrated between two atoms. [Pg.654]

For some mixtures, unusual conditions seem to develop in the rate of pressure rise at peak explosion pressures due to possible changes in the violence of the reaction [54]. Similar results are reported for the level of energy required for ignition of a mixture related to the concentration range for ignition. Without examining the energy level versus concentration at various initial pressures, it... [Pg.497]

Many atomic nuclei behave like small bar magnets, with energies that depend on their orientation in a magnetic field. An NMR spectrometer detects transitions between these energy levels. The nucleus most widely used for NMR is the proton, and we shall concentrate on it. Two other very common nuclei, those of carbon-12 and oxygen-16, are nonmagnetic, so they are invisible in NMR. [Pg.904]

When the cluster size increases (Fig. 3), the occupied O2.S energy levels are concentrated in two blocks around -15.2 and -312 eV of widths 1.3 and 1.7 eV respectively the Fermi level is slightly removed and stabilized at -14.57 eV, the same value as in the band calculation. [Pg.431]

It should be mentioned that one can detect two types of equilibrium in the model of charge transfer in the absorbate - adsorbent system (i) complete transition of chemisorbed particles into the charged form and (ii) flattening of Fermi level of adsorbent and energy level of chemisorbed particles. The former type takes place in the case of substantially low concentration of adsorbed particles characterized by high affinity to electron compared to the work function of semiconductor (for acceptor adsorbates) or small value of ionization potential (for donor adsorbates). The latter type can take place for sufficiently large concentration of chemisorbed particles. [Pg.27]

As for equilibrium values of as and P they are mainly dependent on relations between such parameters of the systems as initial electric conductivity of adsorbent, concentration of chemisorbed particles, reciprocal position of the energy levels of absorbate and adsorbent. Thus, during acceptor adsorption in case of small concentration of adsorption particles one can use (1.82) and (1.84) to arrive to expressions for equilibrium values of ohmic electric conductivity and the tangent of inclination angle of VAC ... [Pg.63]

In reality there are subtle deviations from this simple picture. The energy levels shift somewhat from element to element, and different structure types have different band structures that become more or less favorable depending on the valence electron concentration. Furthermore, in the COOP diagram of Fig. 10.13 the s-p, s-d and p-d interactions were not taken into account, although they cannot be neglected. A more exact calculation shows that only antibonding contributions are to be expected from the eleventh valence electron onwards. [Pg.102]

A theoretical interpretation relating the valence electron concentration and the structure was put forward by H. Jones. If we start from copper and add more and more zinc, the valence electron concentration increases. The added electrons have to occupy higher energy levels, i.e. the energy of the Fermi limit is raised and comes closer to the limits of the first Brillouin zone. This is approached at about VEC = 1.36. Higher values of the VEC require the occupation of antibonding states now the body-centered cubic lattice becomes more favorable as it allows a higher VEC within the first Brillouin zone, up to approximately VEC = 1.48. [Pg.162]

Oxidation-reduction electrodes. An inert metal (usually Pt, Au, or Hg) is immersed in a solution of two soluble oxidation forms of a substance. Equilibrium is established through electrons, whose concentration in solution is only hypothetical and whose electrochemical potential in solution is expressed in terms of the appropriate combination of the electrochemical potentials of the reduced and oxidized forms, which then correspond to a given energy level of the electrons in solution (cf. page 151). This type of electrode differs from electrodes of the first kind only in that both oxidation states can be present in variable concentrations, while, in electrodes of the first kind, one of the oxidation states is the electrode material (cf. Eqs 3.1.19 and 3.1.21). [Pg.181]


See other pages where Energy levels concentration is mentioned: [Pg.1119]    [Pg.1502]    [Pg.1841]    [Pg.172]    [Pg.17]    [Pg.126]    [Pg.450]    [Pg.356]    [Pg.361]    [Pg.362]    [Pg.377]    [Pg.151]    [Pg.34]    [Pg.63]    [Pg.301]    [Pg.225]    [Pg.227]    [Pg.30]    [Pg.364]    [Pg.391]    [Pg.134]    [Pg.177]    [Pg.187]    [Pg.262]    [Pg.7]    [Pg.164]    [Pg.30]    [Pg.38]    [Pg.46]    [Pg.47]    [Pg.55]    [Pg.62]    [Pg.3]    [Pg.259]    [Pg.6]    [Pg.23]    [Pg.87]    [Pg.247]   
See also in sourсe #XX -- [ Pg.230 ]




SEARCH



Concentration levels

Energy concentration

© 2024 chempedia.info