Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Endoplasmic smooth

Sarcoplasmic reticulum (SR) is a form of the smoothfaced endoplasmic reticulum (ER) in muscles. It functions as an intracellular Ca2+ store for muscle contraction. Ca2+ is energetically sequestered into the SR by Ca2+-pump/sarcoplasmic endoplasmic reticulum Ca2+-ATPase (SERCA) and released via Ca2+ release channels on stimuli (ryanodine receptor in striated muscles and inositol 1,4,5-trisphosphate receptor in most smooth muscles). Endoplasmic reticulum in non-muscle tissues also functions as an intracellular Ca2+ store. [Pg.1110]

In the sarcoplasm of smooth muscle cells there is a membrane bound compartment usually referred to as the SR by analogy with skeletal muscle. However, it is not at all clear that the interior of these membrane-bound regions are continuous as they are in skeletal muscle. The primary properties of this system seem to be quite similar to those of the endoplasmic reticulum of many other cell types. In general, calcium is concentrated into the membrane-bound reticulum and then released to initiate the characteristic action of the cell. [Pg.189]

Figure 2. Reporting of cytosolic free calcium levels by indo-1. Increases in cytosolic calcium, due either to entry of extracellular calcium via calcium channels or to release of intracellular calcium sequestered in organelles such as smooth endoplasmic reticulum, results in formation of the indo-l-calcium complex. Fluorescence intensity at 400 nm (excitation at 340 nm) is proportional to the concentration of this complex the dissociation constant for this complex is about 250 nff (24), making this probe useful for detecting calcium activities in the range of 25 to 2500 nJ. ... Figure 2. Reporting of cytosolic free calcium levels by indo-1. Increases in cytosolic calcium, due either to entry of extracellular calcium via calcium channels or to release of intracellular calcium sequestered in organelles such as smooth endoplasmic reticulum, results in formation of the indo-l-calcium complex. Fluorescence intensity at 400 nm (excitation at 340 nm) is proportional to the concentration of this complex the dissociation constant for this complex is about 250 nff (24), making this probe useful for detecting calcium activities in the range of 25 to 2500 nJ. ...
Figure 3. Reporting of intracellular calcium sequestration by chlorotetracycline (CTC). CTC preferentially partitions into cell membranes and its fluorescence in this environment is sensitive to calcium bound to the membrane therefore its signal (excitation AOO nm, emission 530 nm) will come largely from organelles that bind or sequester calcium, such as smooth endoplasmic reticulum or mitochondria. Release of calcium from such organelles is accompanied by dissociation of the calcium-CTC complex, a decrease in CTC fluorescence and efflux of unbound probe from the organelle and from the cell. Figure 3. Reporting of intracellular calcium sequestration by chlorotetracycline (CTC). CTC preferentially partitions into cell membranes and its fluorescence in this environment is sensitive to calcium bound to the membrane therefore its signal (excitation AOO nm, emission 530 nm) will come largely from organelles that bind or sequester calcium, such as smooth endoplasmic reticulum or mitochondria. Release of calcium from such organelles is accompanied by dissociation of the calcium-CTC complex, a decrease in CTC fluorescence and efflux of unbound probe from the organelle and from the cell.
The microsomal fraction consists mainly of vesicles (microsomes) derived from the endoplasmic reticulum (smooth and rough). It contains cytochrome P450 and NADPH/cytochrome P450 reductase (collectively the microsomal monooxygenase system), carboxylesterases, A-esterases, epoxide hydrolases, glucuronyl transferases, and other enzymes that metabolize xenobiotics. The 105,000 g supernatant contains soluble enzymes such as glutathione-5-trans-ferases, sulfotransferases, and certain esterases. The 11,000 g supernatant contains all of the types of enzyme listed earlier. [Pg.46]

After mRNA splicing, the tropoelastin mRNA is translated at the surface of the rough endoplasmic reticulum (RER) in a variety of cells smooth muscle cells, endothelial and microvascular cells, chondrocytes and fibroblasts. The approximately 70 kDa precursor protein (depending on isoform) is synthesized with an N-terminal 26-amino-acid signal peptide. This nascent polypeptide chain is transported into the lumen of the RER, where the signal peptide is removed cotranslationally [9]. [Pg.74]

Figure 25-2. The formation and secretion of (A) chylomicrons by an intestinal cell and (B) very low density lipoproteins by a hepatic cell. (RER, rough endoplasmic reticulum SER, smooth endoplasmic reticulum G, Golgi apparatus N, nucleus C, chylomicrons VLDL, very low density lipoproteins E, endothelium SD, space of Disse, containing blood plasma.) Apolipoprotein B, synthesized in the RER, is incorporated into lipoproteins in the SER, the main site of synthesis of triacylglycerol. After addition of carbohydrate residues in G, they are released from the cell by reverse pinocytosis. Chylomicrons pass into the lymphatic system. VLDL are secreted into the space of Disse and then into the hepatic sinusoids through fenestrae in the endothelial lining. Figure 25-2. The formation and secretion of (A) chylomicrons by an intestinal cell and (B) very low density lipoproteins by a hepatic cell. (RER, rough endoplasmic reticulum SER, smooth endoplasmic reticulum G, Golgi apparatus N, nucleus C, chylomicrons VLDL, very low density lipoproteins E, endothelium SD, space of Disse, containing blood plasma.) Apolipoprotein B, synthesized in the RER, is incorporated into lipoproteins in the SER, the main site of synthesis of triacylglycerol. After addition of carbohydrate residues in G, they are released from the cell by reverse pinocytosis. Chylomicrons pass into the lymphatic system. VLDL are secreted into the space of Disse and then into the hepatic sinusoids through fenestrae in the endothelial lining.
Their hydroxylated products are more water-soluble than their generally lipophilic substrates, facilitating excretion Liver contains highest amounts, but found In most If not all tissues. Including small Intestine, brain, and lung Located in the smooth endoplasmic reticulum or in mitochondria (steroidogenic hormones)... [Pg.629]

Like other cells, a neuron has a nucleus with genetic DNA, although nerve cells cannot divide (replicate) after maturity, and a prominent nucleolus for ribosome synthesis. There are also mitochondria for energy supply as well as a smooth and a rough endoplasmic reticulum for lipid and protein synthesis, and a Golgi apparatus. These are all in a fluid cytosol (cytoplasm), containing enzymes for cell metabolism and NT synthesis and which is surrounded by a phospholipid plasma membrane, impermeable to ions and water-soluble substances. In order to cross the membrane, substances either have to be very lipid soluble or transported by special carrier proteins. It is also the site for NT receptors and the various ion channels important in the control of neuronal excitability. [Pg.10]

This gene is broadly distributed in skeletal muscle, heart, uterus, and in a variety of non-muscle cells. The mRNA levels are particularly high in intestine, lung and spleen, whereas they are very low in liver, testes, kidney and pancreas. In the muscle tissue SERCA3 may be confined primarily to non-muscle cells (vascular smooth muscle, endothelial cells, etc.). The C-terminus of SERCA3 is Asp-Gly-Lys Lys-Asp-Leu-Lys (Table I) it may serve as a sorting signal for retention of the enzyme in the endoplasmic reticulum [57]. [Pg.59]

FIGURE 1-5 Detail of the nuclear envelope showing a nuclear pore (single arrow) and the outer leaflet connected to the smooth endoplasmic reticulum (ER) (double arrows). Two cisternae of the rough ER with associated ribosomes are also present. X80,000. [Pg.6]

The smooth endoplasmic reticulum calcium pumps (SERCA) found in brain were first identified in sarcoplasmic reticulum. The three isoforms of SERCA are products of separate genes SERCA-1 is expressed in fast-twitch skeletal muscle SERCA-2a in cardiac/slow-twitch muscle SERCA-2b, an alternatively spliced form, is expressed in smooth muscle and non-muscle tissues SERCA-3 is... [Pg.80]

Historically, endoplasmic reticulum is classified as rough or smooth, based on the presence (RER) or absence (SER) of membrane-associated polysomes 144... [Pg.139]


See other pages where Endoplasmic smooth is mentioned: [Pg.844]    [Pg.26]    [Pg.473]    [Pg.814]    [Pg.969]    [Pg.1184]    [Pg.71]    [Pg.84]    [Pg.213]    [Pg.438]    [Pg.440]    [Pg.440]    [Pg.581]    [Pg.607]    [Pg.627]    [Pg.627]    [Pg.628]    [Pg.348]    [Pg.350]    [Pg.360]    [Pg.36]    [Pg.116]    [Pg.201]    [Pg.261]    [Pg.31]    [Pg.61]    [Pg.7]    [Pg.7]    [Pg.17]    [Pg.17]    [Pg.285]    [Pg.491]    [Pg.967]    [Pg.967]   
See also in sourсe #XX -- [ Pg.26 , Pg.53 , Pg.55 , Pg.210 , Pg.394 , Pg.524 , Pg.544 ]

See also in sourсe #XX -- [ Pg.135 ]




SEARCH



Alcohol Smooth endoplasmic reticulum

Smooth endoplasmic reticulum

Smooth endoplasmic reticulum calcium

Smooth endoplasmic reticulum calcium pumps

© 2024 chempedia.info