Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Endo-isomer

Under the usual conditions their ratio is kinetically controlled. Alder and Stein already discerned that there usually exists a preference for formation of the endo isomer (formulated as a tendency of maximum accumulation of unsaturation, the Alder-Stein rule). Indeed, there are only very few examples of Diels-Alder reactions where the exo isomer is the major product. The interactions underlying this behaviour have been subject of intensive research. Since the reactions leadirig to endo and exo product share the same initial state, the differences between the respective transition-state energies fully account for the observed selectivity. These differences are typically in the range of 10-15 kJ per mole. ... [Pg.6]

Only the results of the major (>90%) endo isomer of the Diels-Alder adduct are shown. [Pg.93]

Endrin [72-20-8] is l,2,3,4,10,10-hexachloro-l,4,4t ,5,8,8t -hexahydro-6,7-epoxy-l,4- <7o, <7o-5,8-dimethanonaphthalene (35) (mp 245 dec, vp 0.022 mPa at 25°C) and is soluble in water to 23 / g/L. It is produced by a Diels-Alder reaction of hexachloronorbomadiene with cyclopentadiene, followed by epoxidation. This reaction produces the endo,endo isomer of dieldrin, which is less stable and more toxic with rat LD q values of 17.8 and 7.5 (oral) and 15 (dermal) mg/kg. It is used as a cotton insecticide but because of its high toxicity to fish it has been restricted. [Pg.277]

Dicyclopentadiene exists ia two stereoisomeric forms, the endo and exo isomers. Commercial DCPD, 3a,4,7,7a-tetrahydro-4,7-methano-lH-iadene, is predominandy the endo isomer (exo endo 6 953 by capillary gas chromatography). The dimer is the form ia which CPD is sold commercially. [Pg.429]

Nitrile ylides derived from the photolysis of 1-azirines have also been found to undergo a novel intramolecular 1,1-cycloaddition reaction (75JA3862). Irradiation of (65) gave a 1 1 mixture of azabicyclohexenes (67) and (68). On further irradiation (67) was quantitatively isomerized to (68). Photolysis of (65) in the presence of excess dimethyl acetylenedicar-boxylate resulted in the 1,3-dipolar trapping of the normal nitrile ylide. Under these conditions, the formation of azabicyclohexenes (67) and (68) was entirely suppressed. The photoreaction of the closely related methyl-substituted azirine (65b) gave azabicyclohexene (68b) as the primary photoproduct. The formation of the thermodynamically less favored endo isomer, i.e. (68b), corresponds to a complete inversion of stereochemistry about the TT-system in the cycloaddition process. [Pg.58]

The photochemical behavior of the isomeric 3-methyl-2-phenyl-2-allyl-l-azirine (66) system was also studied. Irradiation of (66) in cyclohexane gave a quantitative yield of azabicyclohexenes (67) and (68). Control experiments showed that (65) and (66) were not interconverted by a Cope reaction under the photolytic conditions. Photocycloaddition of (66) with an added dipolarophile afforded a different 1,3-dipolar cycloadduct from that obtained from (65). The thermodynamically less favored endo isomer (68b) was also formed as the exclusive product from the irradiation of azirine (66b). [Pg.58]

The acetolyses of both ero-2-norbomyl brosylate and e do-2-norbomyl brosylate produce exclusively exo-2-norbomyl acetate. The exo-brosylate is more reactive than the endo isomer by a factor of 350. Furthermore, enantiomerically enriched exo-brosylate gave completely racemic ero-acetate, and the endo-brosylate gave acetate that was at least 93% racemic. [Pg.327]

Attack ty acetate at C-1 of C-2 would be equally likely and would result in equal amounts of the enantiomeric acetates. The acetate ester would be exo because reaction must occur from the direction opposite the bridging interaction. The nonclassical ion can be formed directly only from the exo-brosylate because it has the proper anti relationship between the C(l)—C(6) bond and the leaving group. The bridged ion can be formed from the endo-brosylate only after an unassisted ionization. This would explain the rate difference between the exo and endo isomers. [Pg.328]

Let us now return to the question of solvolysis and how it relates to the stracture under stable-ion conditions. To relate the structural data to solvolysis conditions, the primary issues that must be considered are the extent of solvent participation in the transition state and the nature of solvation of the cationic intermediate. The extent of solvent participation has been probed by comparison of solvolysis characteristics in trifluoroacetic acid with the solvolysis in acetic acid. The exo endo reactivity ratio in trifluoroacetic acid is 1120 1, compared to 280 1 in acetic acid. Whereas the endo isomer shows solvent sensitivity typical of normal secondary tosylates, the exx> isomer reveals a reduced sensitivity. This indicates that the transition state for solvolysis of the exo isomer possesses a greater degree of charge dispersal, which would be consistent with a bridged structure. This fact, along with the rate enhancement of the exo isomer, indicates that the c participation commences prior to the transition state being attained, so that it can be concluded that bridging is a characteristic of the solvolysis intermediate, as well as of the stable-ion structure. ... [Pg.332]

Another line of evidence that bridging is important in the transition state for solvolysis has to do with substituent effects for groups placed at C-4, C-5, C-6, and C-7 on the norbomyl system. The solvolysis rate is most strongly affected by C-6 substituents, and the exo isomer is more sensitive to these substituents than is the endo isomer. This implies that the transition state for solvolysis is especially sensitive to C-6 substituents, as would be ejqiected if the C(l)—C(6) bond participates in solvolysis. ... [Pg.332]

There are probably several factors which contribute to determining the endo exo ratio in any specific case. These include steric effects, dipole-dipole interactions, and London dispersion forces. MO interpretations emphasize secondary orbital interactions between the It orbitals on the dienophile substituent(s) and the developing 7t bond between C-2 and C-3 of the diene. There are quite a few exceptions to the Alder rule, and in most cases the preference for the endo isomer is relatively modest. For example, whereas cyclopentadiene reacts with methyl acrylate in decalin solution to give mainly the endo adduct (75%), the ratio is solvent-sensitive and ranges up to 90% endo in methanol. When a methyl substituent is added to the dienophile (methyl methacrylate), the exo product predominates. ... [Pg.638]

In the 1,3-dipolar cycloaddition reactions of especially allyl anion type 1,3-dipoles with alkenes the formation of diastereomers has to be considered. In reactions of nitrones with a terminal alkene the nitrone can approach the alkene in an endo or an exo fashion giving rise to two different diastereomers. The nomenclature endo and exo is well known from the Diels-Alder reaction [3]. The endo isomer arises from the reaction in which the nitrogen atom of the dipole points in the same direction as the substituent of the alkene as outlined in Scheme 6.7. However, compared with the Diels-Alder reaction in which the endo transition state is stabilized by secondary 7t-orbital interactions, the actual interaction of the N-nitrone p -orbital with a vicinal p -orbital on the alkene, and thus the stabilization, is small [25]. The endojexo selectivity in the 1,3-dipolar cycloaddition reaction is therefore primarily controlled by the structure of the substrates or by a catalyst. [Pg.217]

Among the J ,J -DBFOX/Ph-transition(II) metal complex catalysts examined in nitrone cydoadditions, the anhydrous J ,J -DBFOX/Ph complex catalyst prepared from Ni(C104)2 or Fe(C104)2 provided equally excellent results. For example, in the presence of 10 mol% of the anhydrous nickel(II) complex catalyst R,R-DBFOX/Ph-Ni(C104)2, which was prepared in-situ from J ,J -DBFOX/Ph ligand, NiBr2, and 2 equimolar amounts of AgC104 in dichloromethane, the reaction of 3-crotonoyl-2-oxazolidinone with N-benzylidenemethylamine N-oxide at room temperature produced the 3,4-trans-isoxazolidine (63% yield) in near perfect endo selectivity (endo/exo=99 l) and enantioselectivity in favor for the 3S,4J ,5S enantiomer (>99% ee for the endo isomer. Scheme 7.21). The copper(II) perchlorate complex showed no catalytic activity, however, whereas the ytterbium(III) triflate complex led to the formation of racemic cycloadducts. [Pg.268]

P/Z equilibrium 233 enantioselectivity 216 endo 153 endo isomer 217 endo/exo ratio 303 endo/exo selectivity 217 mt-shikimic acid 30 ethyl vinyl ether 220 exo 153 exo-endo 303 exo-selective 13... [Pg.330]

The Diels-Alder reaction of simple alkoxy alkenylcarbene complexes leads to mixtures of endo and exo cycloadducts, with the endo isomer generally being the major one [96,97]. Asymmetric examples of endo Diels-Alder reactions have also been reported by the use of chiral auxiliaries both on the carbene complex and the diene. Thus, the reaction of cyclopentadiene with chiral alkenylcarbene complexes derived from (-)-menthol proceeds to afford a 4 1... [Pg.94]

Selenoaldehydes 104, like thioaldehydes, have also been generated in situ from acetals and then directly trapped with dienes, thus offering a useful one-pot procedure for preparing cyclic seleno-compounds [103,104], The construction of a carbon-selenium double bond was achieved by reacting acetal derivatives with dimethylaluminum selenide (Equation 2.30). Cycloadditions of seleno aldehydes occur even at 0 °C. In these reactions, however, the carbon-selenium bond formed by the nucleophilic attack of the electronegative selenium atom in 105 to the aluminum-coordinated acetal carbon, may require a high reaction temperature [103], The cycloaddition with cyclopentadiene preferentially gave the kinetically favorable endo isomer. [Pg.71]

Sulfinyldiene 40 reacts, regio- and stereo selectively, with methylacrylate in the presence of a catalyst, affording carbomethoxycyclohexene derivatives [45]. Among the catalysts examined, the best was lithium perchlorate used as a suspension in DCM it gave only endo isomers in 70% yield in a 96 4 d.e. ratio (Equation 3.11). [Pg.113]

This has been identified as the endo isomer, i.e. the one in which the Ce methyl group is inside (Koptyug et al., 1969). As in the case of 19, when 22 is warmed to — 34°, a clean first-order reversion to the hexa-... [Pg.134]

When the two bridges not containing the substituent are of equal length, this convention cannot be applied, but in some cases a decision can still be made for example, if one of the two bridges contains a functional group, the endo isomer is the one in which the substituent is closer to the functional group ... [Pg.163]

Furthermore, 48 solvolyzed 350 times faster than its endo isomer 51. Similar high exo/endo rate ratios have been found in many other [2.2.1] systems. These two results—(1) that solvolysis of an optically active exo isomer gave only racemic exo isomers and (2) the high exo/endo rate ratio—were interpreted by Winstein and Trifan as indicating that the 1,6 bond assists in the departure of the leaving group and that a nonclassical intermediate (52) is involved. They reasoned that solvolysis of the endo isomer 51 is not assisted by the 1,6 bond because it is not in a favorable position for backside attack, and that consequently solvolysis of 51 takes... [Pg.414]

In addition to the branched rings and chains, cyclic Ss conformations of lower symmetry than Did are also likely components of liquid sulfur. For example, the following exo-endo isomer of Ss (Cs symmetry) is by just 28 kJ mor (AG°29s) less stable than the ground state conformation and therefore its relative concentration in liquid sulfur and sulfur vapor at the boiling point will also be 1% of all Ss species [35]. [Pg.38]

Chiral dienophiles, prepared from an aldehyde and asparagine in water followed by reacting with acryloyl chloride, reacted with cyclopentadiene at room temperature in water or ethanol-water to provide cycloadducts diastereoselectively and chiral products upon separation and hydrolysis (47-64% ee for the endo isomers endo/exo 82 18) (Eq. 12.18).61... [Pg.387]

The reactions with quadricyclane, shown in Eq. (31), gave products identical to those formed by the same silene reacting in a [2 + 2] manner with norbornene. Mixtures of exo endo isomers were frequently observed. Again, only silenes of the Auner type have been studied with this reagent,51-53,185,188 so it is not known whether the Wiberg- or Brook-type silenes will undergo this mode of cycloaddition. [Pg.120]


See other pages where Endo-isomer is mentioned: [Pg.158]    [Pg.61]    [Pg.62]    [Pg.62]    [Pg.68]    [Pg.87]    [Pg.94]    [Pg.96]    [Pg.139]    [Pg.429]    [Pg.431]    [Pg.130]    [Pg.343]    [Pg.72]    [Pg.217]    [Pg.26]    [Pg.144]    [Pg.145]    [Pg.33]    [Pg.224]    [Pg.224]    [Pg.95]    [Pg.414]    [Pg.762]    [Pg.1080]    [Pg.167]    [Pg.938]    [Pg.387]   
See also in sourсe #XX -- [ Pg.133 ]

See also in sourсe #XX -- [ Pg.638 , Pg.642 , Pg.671 ]




SEARCH



Endo and exo isomers

Endo isomers, definition

Isomer endo/exo

© 2024 chempedia.info