Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

End functionalized polymers

The end functions of many polymers arise as a consequence of the way the reaction has been either initiated or terminated. The end group of a homopolymer will also have a different energy from that of the bulk of the main chain, as discussed in Chapter 7. As a consequence the surface interaction parameter has the form [Pg.278]


Group transfer processes are of particular importance in the production of telechelic or di-end functional polymers. [Pg.289]

Functional and end-functional polymers are precursors to block and graft copolymers and, in some cases, polymer networks. Copolymers with in-chain functionality may be simply prepared in copolymerizations by using a functional monomer. However, obtaining a desired distribution requires consideration of the chain statistics and, for low molecular weight polymers, the specificity of the initiation and termination processes, l hese issues are discussed in Section 7.5.6... [Pg.374]

End-functional polymers, including telechelic and other di-end functional polymers, can be produced by conventional radical polymerization with the aid of functional initiators (Section 7,5.1), chain transfer agents (Section 7.5.2), monomers (Section 7.5.4) or inhibitors (Section 7.5.5). Recent advances in our understanding of radical polymerization offer greater control of these reactions and hence of the polymer functionality. Reviews on the synthesis of end-functional polymers include those by Colombani,188 Tezuka,1 9 Ebdon,190 Boutevin,191 Heitz,180 Nguyen and Marechal,192 Brosse et al.rm and French.194... [Pg.374]

A telechelic polymer is a di-end-functional polymer where both ends possess the same functionality. [Pg.374]

Living polymerization processes lend themselves to the synthesis of end functional polymers their use in this context is described in Chapter 9. In this section we limit discussion to processes based on conventional radical polymerization,... [Pg.375]

Predominantly di-end-functional polymers may be prepared by conducting polymerizations with high concentrations of a functional initiator. Some of the first commercial products of this class, carboxy and hydroxy-terminated polybutadienes, were produced by this route.194... [Pg.375]

Ebdon and coworkers22 "232 have reported telechelic synthesis by a process that involves copolymerizing butadiene or acetylene derivatives to form polymers with internal unsaturation. Ozonolysis of these polymers yields di-end functional polymers. The a,o>dicarboxy1ic acid telechelic was prepared from poly(S-s tot-B) (Scheme 7.19). Precautions were necessary to stop degradation of the PS chains during ozonolysis. 28 The presence of pendant carboxylic acid groups, formed by ozonolysis of 1,2-diene units, was not reported. [Pg.380]

End-functional polymers are also produced by copolymerizations of monosubstituted monomers with a-methylvinyl or other monomers with high transfer constants in the presence of catalytic chain transfer agents (Section 6.2.5)/11 "36 Thus, copolymerization of BA wilh as little as 2% AMS in lhe presence of eobaloximc provides PBA with AMS at the chain cnd.2j7... [Pg.380]

Inhibitors (Section 5.3), including transition metal complexes and nilroxides, may be used to prepare mono-end-functional polymers. If an appropriate initiator is employed, di-end-functional polymers are also possible. [Pg.381]

Such functionality can also be of great practical importance since functional initiators, transfer agents, etc. are applied to prepare end-functional polymers (see Section 7.5) or block or graft copolymers (Section 7.6). In these cases the need to maximize the fraction of chains that contain the reactive or other desired functionality is obvious. However, there are also well-documented cases where weak links formed by initiation, termination, or abnormal propagation processes impair the thermal or photochemical stability of polymers. [Pg.414]

Most reviews on living radical polymerization mention the application of these methods in the synthesis of end-lunctional polymers. In that ideally all chain ends are retained, and no new chains are formed (Section 9.1.2), living polymerization processes are particularly suited to the synthesis of end-functional polymers. Living radical processes are no exception in this regard. We distinguish two main processes for the synthesis of end-functional polymers. [Pg.531]

There are additional factors that may reduce functionality which are specific to the various polymerization processes and the particular chemistries used for end group transformation. These are mentioned in the following sections. This section also details methods for removing dormant chain ends from polymers formed by NMP, ATRP and RAFT. This is sometimes necessary since the dormant chain-end often constitutes a weak link that can lead to impaired thermal or photochemical stability (Sections 8.2.1 and 8.2.2). Block copolymers, which may be considered as a form of end-functional polymer, and the use of end-functional polymers in the synthesis of block copolymers are considered in Section 9.8. The use of end functional polymers in forming star and graft polymers is dealt with in Sections 9.9.2 and 9.10.3 respectively. [Pg.531]

The literature on synthesis of end-functional polymers by ATRP through 2000 is discussed in a review by Cocssens and MatyjaszewskiT92 The topic also has coverage in more general reviews on ATRP.268 269... [Pg.533]

Addition of TEMPO post-polymerization to a methacrylate polymerization provides an unsaturated chain end (Scheme 9.52)i07 sw presumably by disproportionation of the PMMA propagating radical with the nitroxide. For polymers based on monosubstituted monomers (PS,1 0" PBA59,[Pg.534]

The thiocarbonylthio group can be transformed post-polymerization in a variety of ways to produce end-functional polymers or it can be removed. The presence of the thiocarbonylthio groups also means that the polymers synthesized by RAFT polymerization are usually colored and they possess a labile end group that may decompose to produce sometimes odorous byproducts. Even though the color and other issues may be modified by appropriate selection of the initial RAFT agent, these issues have provided further incentive to develop effective methods for treatment of RAFT-synthesized polymer to transform the thiocarbonylthio groups post-polymerization. [Pg.538]

Many block and graft copolymer syntheses involving transformation reactions have been described. These involve preparation of polymeric species by a mechanism that leaves a terminal functionality that allows polymerization to be continued by another mechanism. Such processes are discussed in Section 7.6.2 for cases where one of the steps involves conventional radical polymerization. In this section, we consider cases where at least one of the steps involves living radical polymerization. Numerous examples of converting a preformed end-functional polymer to a macroinitiator for NMP or ATRP or a macro-RAFT agent have been reported.554 The overall process, when it involves RAFT polymerization, is shown in Scheme 9.60. [Pg.544]

Commercial end functional polymers have been converted to alkoxyamincs and used to prepare PKO-Worri-PS.040 The hydroxyl group of alkoxyamine 284 was used to initiate ring-opening polymerization of caprolactonc catalyzed by aluminum tris(isopropoxide) and the product subsequently was used to initiate S polymerization by NMP thus forming polycaprolactone-Wodr- P8.641 The alternate strategy of forming PS by NMP and using the hydroxyl chain end of the product to initiate polymerization of caprolactonc was also used. [Pg.545]

The synthesis of end functional polymers by NMP, ATRP and RAFT has already been discussed in Section 9.7. The "grafting to approach involves the covalent attachment of an end-funetionalized polymer with reactive surface groups on the substrate. The approach is inherently limited by the crowding of chains at the surface and the limit this places on the final graft density. [Pg.563]

RAFT agents used 539 oi-furictionalization, end-functional polymer... [Pg.611]

RAFT polymerization, synthesis of end-functional polymers 563 CiPt distributions 241-2... [Pg.611]


See other pages where End functionalized polymers is mentioned: [Pg.195]    [Pg.296]    [Pg.374]    [Pg.385]    [Pg.387]    [Pg.420]    [Pg.454]    [Pg.471]    [Pg.531]    [Pg.539]    [Pg.544]    [Pg.563]    [Pg.594]    [Pg.595]    [Pg.596]    [Pg.597]    [Pg.600]    [Pg.602]    [Pg.606]    [Pg.606]    [Pg.608]    [Pg.608]    [Pg.609]    [Pg.611]    [Pg.611]    [Pg.612]    [Pg.613]    [Pg.614]    [Pg.616]    [Pg.616]    [Pg.616]   
See also in sourсe #XX -- [ Pg.150 ]

See also in sourсe #XX -- [ Pg.476 ]

See also in sourсe #XX -- [ Pg.98 ]

See also in sourсe #XX -- [ Pg.61 ]




SEARCH



Functionally ended polymers

© 2024 chempedia.info