Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective vinylation

This chemistry was extended to a catalytic enantioselective alkenylation and phenylation of aldehydes and a-ketoesters. Using CuF-DTBM-SEGPHOS complex, products were obtained with excellent enantioselectivity from a wide range of aldehydes including aromatic and aliphatic aldehdyes, [Eq. (13.26)]. Previously catalytic enantioselective vinylation and phenylation are restricted using the corresponding zinc reagents. The active nucleophile is proposed to be an alkenyl or phenyl copper, based on NMR studies. The chiral CuF catalyst can also be applied to a catalytic enantioselective aldol reaction to ketones... [Pg.397]

Recently, Jorgensen reported the first example of a catalytic enantioselective vinylic substitution reaction (Scheme 11.14). With a bulky 1-adamantylcarbonyl group modified phase-transfer catalyst lOd as the catalyst, the reaction between alkyl cyclopentanone-2-carboxylates (53a) with (ZJ-P-cholro-l-phenylpropenone (63a) proceeded smoothly, affording the product 64a with Z/f > 95 5 and 94% ee [50]. As for the trisubstituted alkene 64b, the a-iodine atom was tolerated in the catalytic reaction. [Pg.397]

SCHEME 8.14. Enantioselective vinylic substitution, alkynylation, and Dixon s alkylation. [Pg.284]

Scheme 42.32 Petasis-type enantioselective vinylation of quinolines using a thiourea catalyst. Scheme 42.32 Petasis-type enantioselective vinylation of quinolines using a thiourea catalyst.
A more eflicient and general synthetic procedure is the Masamune reaction of aldehydes with boron enolates of chiral a-silyloxy ketones. A double asymmetric induction generates two new chiral centres with enantioselectivities > 99%. It is again explained by a chair-like six-centre transition state. The repulsive interactions of the bulky cyclohexyl group with the vinylic hydrogen and the boron ligands dictate the approach of the enolate to the aldehyde (S. Masamune, 1981 A). The fi-hydroxy-x-methyl ketones obtained are pure threo products (threo = threose- or threonine-like Fischer formula also termed syn" = planar zig-zag chain with substituents on one side), and the reaction has successfully been applied to macrolide syntheses (S. Masamune, 1981 B). Optically pure threo (= syn") 8-hydroxy-a-methyl carboxylic acids are obtained by desilylation and periodate oxidation (S. Masamune, 1981 A). Chiral 0-((S)-trans-2,5-dimethyl-l-borolanyl) ketene thioketals giving pure erythro (= anti ) diastereomers have also been developed by S. Masamune (1986). [Pg.62]

Conceptually at least, these compounds can be obtained via initial enantioselective hydroformylation of the appropriate vinyl aromatic to branched chiral aldehyde and subsequent oxidation. [Pg.471]

Lipase-catalyzed enantioselective transesterification of 0-substituted-l,2-diols is another practical route for the synthesis of P-blockers. Lipase PS suspended in toluene catalyzes the transesterification of (63) with vinyl acetate to give the (5)-ester in 43% yield and >98% ee (78). The desired product, optically pure (R)-ttitylglycidol, is then easily obtained by treating the ester with alcohoHc alkaU. Moreover, Pseudomonas Hpase catalyzes the acylation of oxazohdinone (64) with acetic anhydride in very good yield and selectivity (74). PPL-catalyzed transesterification of a number of /n j -norbomene derivatives proceeds in about 30% yield and 92% ee (79,80). [Pg.340]

Cychc alcohols are excellent targets for enantioselective enzymatic acylations. For example, acylation of (65) with vinyl acetate catalyzed by Hpase SAM-II gives the (R),(3)-ester with 95% ee (81). Similarly (66), which is a precursor for seratonin uptake inhibitor, is resolved in a high yield and selectivity with Amano Hpase P (82). The prostaglandin synthon (67) is resolved by the same method into the optically pure alcohol in 35% yield (83). [Pg.340]

The chiral BOX-copper(ll) complexes, (S)-21a and (l )-21b (X=OTf, SbFg), were found by Evans et al. to catalyze the enantioselective cycloaddition reactions of the a,/ -unsaturated acyl phosphonates 49 with ethyl vinyl ether 46a and the cyclic enol ethers 50 giving the cycloaddition products 51 and 52, respectively, in very high yields and ee as outlined in Scheme 4.33 [38b]. It is notable that the acyclic and cyclic enol ethers react highly stereoselectively and that the same enantiomer is formed using (S)-21a and (J )-21b as the catalyst. It is, furthermore, of practical importance that the cycloaddition reaction can proceed in the presence of only 0.2 mol% (J )-21a (X=SbF6) with minimal reduction in the yield of the cycloaddition product and no loss of enantioselectivity (93% ee). [Pg.179]

More recently, further developments have shown that the reaction outlined in Scheme 4.33 can also proceed for other alkenes, such as silyl-enol ethers of acetophenone [48 b], which gives the endo diastereomer in up to 99% ee. It was also shown that / -ethyl-/ -methyl-substituted acyl phosphonate also can undergo a dia-stereo- and enantioselective cycloaddition reaction with ethyl vinyl ether catalyzed by the chiral Ph-BOX-copper(ll) catalyst. The preparative use of the cycloaddition reaction was demonstrated by performing reactions on the gram scale and showing that no special measures are required for the reaction and that the dihydro-pyrans can be obtained in high yield and with very high diastereo- and enantioselective excess. [Pg.179]

Our development of the catalytic enantioselective inverse electron-demand cycloaddition reaction [49], which was followed by related papers by Evans et al. [38, 48], focused in the initial phase on the reaction of mainly / , y-unsaturated a-keto esters 53 with ethyl vinyl ether 46a and 2,3-dihydrofuran 50a (Scheme 4.34). [Pg.179]

In an analogous study by Meske, the impact of various oxazaborolidinone catalysts for the 1,3-dipolar cycloaddition reactions between acyclic nitrones and vinyl ethers was studied [31]. Both the diastereo- and the enantioselectivities obtained in this work were low. The highest enantioselectivity was obtained by the application of 100 mol% of the tert-butyl-substituted oxazaborolidinone catalyst 3d [27, 32] in the 1,3-dipolar cycloaddition reaction between nitrone la and ethyl vinyl ether 8a giving endo-9a and exo-9a in 42% and 27% isolated yield, respectively, with up to 20% ee for endo-9a as the best result (Scheme 6.10). [Pg.219]

Further improvement of the reaction was achieved by applying ethyl vinyl ether 8a in the reaction instead of 8b (Scheme 6.12). The reactions between a series of nitrones la-d with 8a catalyzed by 10 mol% of 11b all proceeded to give the corresponding products 9 with excellent exo selectivity and with enantioselectivity of 88-97% ee in all cases [23]. [Pg.220]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

P/Z equilibrium 233 enantioselectivity 216 endo 153 endo isomer 217 endo/exo ratio 303 endo/exo selectivity 217 mt-shikimic acid 30 ethyl vinyl ether 220 exo 153 exo-endo 303 exo-selective 13... [Pg.330]

Organoboron reagents ate pariictdarly well suited for 1,4-additions of aryl and vinyl groups to enones. Hayasbi et al. developed a highly enantioselective RliQ)/ BlNAP-catalyzed 1,4-addilion of pbenylbotonic add lo cyclic and acyclic enones [24] fSclieme 7.5) and 1-alkenylpbospbonales [25]. [Pg.227]

Until this work, the reactions between the benzyl sulfonium ylide and ketones to give trisubstituted epoxides had not previously been used in asymmetric sulfur ylide-mediated epoxidation. It was found that good selectivities were obtained with cyclic ketones (Entry 6), but lower diastereo- and enantioselectivities resulted with acyclic ketones (Entries 7 and 8), which still remain challenging substrates for sulfur ylide-mediated epoxidation. In addition they showed that aryl-vinyl epoxides could also be synthesized with the aid of a,P-unsaturated sulfonium salts lOa-b (Scheme 1.4). [Pg.5]

Saito has recently reported high yields and enantioselectivities in aziridine synthesis through reactions between aryl- or vinyl-substituted N-sulfonyl imines and aryl bromides in the presence of base and mediated by a chiral sulfide 122 (Scheme 1.41) [66]. Aryl substituents with electron-withdrawing and -donating groups gave modest transxis selectivities (around 3 1) with high enantioselectiv-... [Pg.32]

This strategy can be applied to the synthesis of vinylepoxides, since high enantioselectivity and good regioselectivity can often be obtained in asymmetric dihydroxylation of dienes, resulting in vinylic diols [24, 25], Transformation of the diols into epoxides thus represents an alternative route to vinylepoxides. This strategy was recently employed in the synthesis of (+)-posticlure (Scheme 9.6) [26]. [Pg.319]

Aliphatic, aromatic and vinylic aldehydes can be employed in this reaction with similar yields and enantioselectivities. When chiral aldehydes are utilized, excellent diastereoselectivity is obtained for matched cases, whereas mismatched cases yield products with moderate to good diastereoselectivity (Scheme 9.13a) [67]. The limitation of the methodology is that only terminal vinylepoxides can be obtained. [Pg.324]


See other pages where Enantioselective vinylation is mentioned: [Pg.110]    [Pg.320]    [Pg.122]    [Pg.283]    [Pg.164]    [Pg.301]    [Pg.73]    [Pg.1406]    [Pg.1427]    [Pg.73]    [Pg.110]    [Pg.320]    [Pg.122]    [Pg.283]    [Pg.164]    [Pg.301]    [Pg.73]    [Pg.1406]    [Pg.1427]    [Pg.73]    [Pg.471]    [Pg.178]    [Pg.336]    [Pg.122]    [Pg.224]    [Pg.224]    [Pg.233]    [Pg.131]    [Pg.271]    [Pg.283]    [Pg.344]    [Pg.576]    [Pg.32]    [Pg.33]    [Pg.168]    [Pg.287]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Reactions enantioselective vinylation

Vinyl allyl ethers, enantioselective

Vinyl allyl ethers, enantioselective Claisen rearrangement

© 2024 chempedia.info