Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantiomeric phosphinate

Tertiary phosphines have been partially resolved by complexation with the asymmetric palladium(ii) complex (16), Treatment of this complex with racemic phosphine gave (17), phosphine of low rotation being recovered from the mother liquor. The enantiomeric phosphine can be... [Pg.4]

P-chiral phosphines, which are potential ligands for transition metal-catalyzed reactions, were synthesized through hpase-catalyzed optical resolution of the corresponding racemic phosphine oxide compounds (Fig. 10.29). For example, lipase from C. rugosa (CRL) was used for the enantioselective hydrolysis of acetoxynaphthyl phosphine oxide (Fig. 10.29(a)). The P-enantiomer was hydrolyzed selectively, leaving the (S)-acetoxy compound, which was further subjected to chemical hydrolysis. Both enantiomeric phosphine oxides were obtained in >95% after recrystallization. Methylation followed by reduction with triethyl amine/trichlorosilane, with inversion of configuration, yielded the desired chiral phosphine. [Pg.330]

Although unsynunetrically substituted amines are chiral, the configuration is not stable because of rapid inversion at nitrogen. The activation energy for pyramidal inversion at phosphorus is much higher than at nitrogen, and many optically active phosphines have been prepared. The barrier to inversion is usually in the range of 30-3S kcal/mol so that enantiomerically pure phosphines are stable at room temperature but racemize by inversion at elevated tempeiatuies. Asymmetrically substituted tetracoordinate phosphorus compounds such as phosphonium salts and phosphine oxides are also chiral. Scheme 2.1 includes some examples of chiral phosphorus compounds. [Pg.79]

Whereas the barrier for pyramidal inversion is low for second-row elements, the heavier elements have much higher barriers to inversion. The preferred bonding angle at trivalent phosphorus and sulfur is about 100°, and thus a greater distortion is required to reach a planar transition state. Typical barriers for trisubstituted phosphines are BOSS kcal/mol, whereas for sulfoxides the barriers are about 35-45 kcal/mol. Many phosphines and sulfoxides have been isolated in enantiomerically enriched form, and they undergo racemization by pyramidal inversion only at high temperature. ... [Pg.103]

Apart from tertiary amines, the reaction may be catalyzed by phosphines, e.g. tri- -butylphosphine or by diethylaluminium iodide." When a chiral catalyst, such as quinuclidin-3-ol 8 is used in enantiomerically enriched form, an asymmetric Baylis-Hillman reaction is possible. In the reaction of ethyl vinyl ketone with an aromatic aldehyde in the presence of one enantiomer of a chiral 3-(hydroxybenzyl)-pyrrolizidine as base, the coupling product has been obtained in enantiomeric excess of up to 70%, e.g. 11 from 9 - -10 ... [Pg.29]

The high diffusivity and low viscosity of sub- and supercritical fluids make them particularly attractive eluents for enantiomeric separations. Mourier et al. first exploited sub- and supercritical eluents for the separation of phosphine oxides on a brush-type chiral stationary phase [28]. They compared analysis time and resolution per unit time for separations performed by LC and SFC. Although selectivity (a) was comparable in LC and SFC for the compounds studied, resolution was consistently... [Pg.302]

Macaudiere et al. first reported the enantiomeric separation of racemic phosphine oxides and amides on native cyclodextrin-based CSPs under subcritical conditions [53]. The separations obtained were indicative of inclusion complexation. When the CO,-methanol eluent used in SFC was replaced with hexane-ethanol in LC, reduced selectivity was observed. The authors proposed that the smaller size of the CO, molecule made it less likely than hexane to compete with the analyte for the cyclodextrin cavity. [Pg.308]

Thereafter, however, P-chirogenic phosphine ligands were the subject of less investigation since the synthesis of highly enantiomerically enriched P-stereo-genic phosphines often proves difficult. Another reluctance Hes in the fact that this class of phosphines, especially diaryl- and triarylphosphines, is conforma-tionally unstable and gradually racemize at high temperature [57,58]. In contrast, optically active trialkylphosphines are known to be optically stable even at considerably elevated temperature. [Pg.8]

The same phosphine-borane used for the synthesis of BisP acted as the starting materials of the construction of MiniPHOS, the next smaller analogue to BisP (Scheme 13). The chirally induced lithium salt was treated with alkylphos-phorus dichloride, methylmagnesium bromide, and borane-THF complex to afford enantiomerically pure MiniPHOS-borane 82a. Recrystallization enabled elimination of a small amount of corresponding raeso-diastereomer formed [29]. Yields were generally low, ranging from 13 to 28%. [Pg.21]

Similarly to the P-CHj group, secondary phosphine-boranes react smoothly in the presence of a base (BuLi, NaH) under mild conditions to afford other kinds of functionalized phosphine-boranes in good to high yields, without racemi-zation. Yet the success of deprotonation/treatment with an electrophile process to afford substituted phosphine derivatives without any loss in optical purity may depend on the deprotonation agents employed. Use of butyllithium usually provides the products with high enantiomeric excess in good to high yields [73]. [Pg.21]

P-Chirogenic diphosphine 19, which rhodium-chelate complex forms a seven-membered ring (rare case for P-stereogenic ligand), was also prepared in reasonable yield (68%) using the wide chemistry of secondary phosphine borane [37]. Deprotonation of the enantiomerically enriched ferf-butylmethylphos-phine-borane 88 (Scheme 15) followed by quenching with a,a -dichloro-o-xylene and recrystallization afforded optically active diphosphine-borane 89 (precursor of free phosphine 19). [Pg.22]

Scheme 16. a Production of both enantiomeric forms of secondary phosphines, b First synthesis of (ii,i )-BisP ... [Pg.24]

As mentioned in Sect. 2.2, phosphine oxides are air-stable compounds, making their use in the field of asymmetric catalysis convenient. Moreover, they present electronic properties very different from the corresponding free phosphines and thus may be employed in different types of enantioselective reactions, m-Chloroperbenzoic acid (m-CPBA) has been showed to be a powerful reagent for the stereospecific oxidation of enantiomerically pure P-chirogenic phos-phine-boranes [98], affording R,R)-97 from Ad-BisP 6 (Scheme 18) [99]. The synthesis of R,R)-98 and (S,S)-99, which possess a f-Bu substituent, differs from the precedent in that deboranation precedes oxidation with hydrogen peroxide to yield the corresponding enantiomerically pure diphosphine oxides (Scheme 18) [99]. [Pg.25]

Scheme 18. Example of synthesis of enantiomerically pure phosphine oxides... Scheme 18. Example of synthesis of enantiomerically pure phosphine oxides...
Chiral phosphinous amides have been found to act as catalysts in enantio-selective allylic alkylation. Horoi has reported that the palladium-catalyzed reaction of ( )-l,3-diphenyl-2-propenyl acetate with the sodium enolate of dimethyl malonate in the presence of [PdCl(7i-allyl)]2 and the chiral ligands 45 gave 46 in 51-94% yields and up to 97% ee (Scheme 38). It is notorious that when the reaction is carried out with the chiral phosphinous amide (S)-45a, the product is also of (S) configuration, whereas by using (R)-45b the enantiomeric (R) product is obtained [165]. [Pg.97]

The protocol of the allylic alkylation, which proceeds most likely via a c-allyl-Fe-intermediate, could be further improved by replacing the phosphine ligand with an M-heterocyclic carbene (NHC) (Scheme 21) [66]. The addition of a ferf-butyl-substituted NHC ligand 86 allowed for full conversion in the exact stoichiometric reaction between allyl carbonate and pronucleophile. Various C-nucleophiles were allylated in good to excellent regioselectivities conserving the 71 bond geometry of enantiomerically enriched ( )- and (Z)-carbonates 87. Even chirality and prochirality transfer was observed (Scheme 21) [67]. [Pg.198]

Recently, the chiral Pt(0) precatalyst Pt[(R, R)-Me-Duphos](trows-stilbene) (11) has been used to prepare enantiomerically enriched chiral phosphines via hydrophosphination of acrylonitrile, t-butyl acrylate and related substrates. This chemistry is summarized in Scheme 5-13. [Pg.150]

Similar catalytic reactions allowed stereocontrol at either of the olefin carbons (Scheme 5-13, Eqs. 2 and 3). As in related catalysis with achiral diphosphine ligands (Scheme 5-7), these reactions proceeded more quickly for smaller phosphine substrates. These processes are not yet synthetically useful, since the enantiomeric excesses (ee s) were low (0-27%) and selectivity for the illustrated phosphine products ranged from 60 to 100%. However, this work demonstrated that asymmetric hydrophosphination can produce non-racemic chiral phosphines [13]. [Pg.151]

Miscellaneous Reactions of Phosphines.- The role of chiral phosphines as ligands in the catalysis of reactions leading to the formation of chiral products has been reviewed.1111 A procedure for the determination of the enantiomeric excess in chiral phosphines has been developed, based on 13C n.m.r. studies of the diastereoisomeric complexes formed by phosphines with the chiral pinenyl nickel bromide complex. 111 Studies of the sulphonation of triphenylphosphine and of chiral arylphosphines have been reported in attempts to prepare water soluble ligands which aid... [Pg.14]

A modification of this procedure allowed the isolation of 1,3,2-oxazaphospholidine 52a as a single diastereomer [41] and its application to asymmetric synthesis of enantiomerically and diastereomerically pure phosphinic acid derivatives 53 and 54 and tertiary phosphine oxides 55 (Scheme 20) [45], A few years later, a similar approach for the synthesis of enantiomerically pure tertiary phosphine oxides 55... [Pg.113]


See other pages where Enantiomeric phosphinate is mentioned: [Pg.345]    [Pg.719]    [Pg.141]    [Pg.89]    [Pg.216]    [Pg.9]    [Pg.10]    [Pg.11]    [Pg.11]    [Pg.20]    [Pg.23]    [Pg.26]    [Pg.28]    [Pg.37]    [Pg.190]    [Pg.193]    [Pg.209]    [Pg.101]    [Pg.82]    [Pg.246]    [Pg.286]    [Pg.115]    [Pg.199]    [Pg.581]    [Pg.365]    [Pg.13]    [Pg.399]    [Pg.565]    [Pg.50]   
See also in sourсe #XX -- [ Pg.170 ]




SEARCH



Enantiomeric phosphine oxide

© 2024 chempedia.info